DATA SHEET
 ANIT-SUIFURATIED GHIP RiESISTOiS
 AF series
 5\%, |\%, 0.5\%

sizes 020I/0402/0603/0805/I206/I2I0/I2I8/20I0/25 I2
RoHS compliant \& Halogen free

SCOPE

This specification describes AF0201 to AF25I2 chip resistors with anti-sulfuration capabilities.

APPLICATIONS

- Industrial Equipment
- Power Application
- Networking Application
- High-end Computer \& Multimedia Electronics in high sulfur environment
- Automotive electronics

FEATURES

- AEC-Q200 qualified
- Superior resistance against sulfur containing atmosphere
- Halogen free product and production
- RoHS compliant
- Reduces environmentally hazardous waste
- High component and equipment reliability
- Saving of PCB space
- Moisture sensitivity level: MSL I

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AF XXXX $\underline{X} \underline{\mathbf{X}} \underline{\mathbf{X X}} \underline{\mathbf{X X X X}} \underline{\underline{L}}$
(I) (2) (3) (4) (5) (6) (7)
(I) SIZE

020|/0402/0603/0805/|206/|2|0/I2|8/20|0/25|2
(2) TOLERANCE
$D= \pm 0.5 \%$
$\mathrm{F}= \pm 1 \%$
$\mathrm{J}= \pm 5 \%$ (for jumper ordering, use code of J)
(3) PACKAGING TYPE
$R=$ Paper taping reel
$K=$ Embossed plastic tape reel
(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec
(5) TAPING REEL
$07=7$ inch dia. Reel
$13=13$ inch dia. Reel
(6) RESISTANCE VALUE

There are 2~4 digits indicated the resistance value. Letter R/K/M is decimal point.
Detailed resistance rules are displayed in the table of "Resistance rule of global part number".
(7) DEFAULT CODE

Letter L is system default code for ordering only (Note)

OrDERING EXAMPLE

The ordering code for an AF0402 chip resistor, value $100 \mathrm{~K} \Omega$ with $\pm \mathrm{I} \%$ tolerance, supplied in 7 -inch tape reel with IOKpcs quantity is: AF0402FR-07I00KL.

NOTE

I. All our R-Chip products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process"
2. On customized label, "LFP" or specific symbol can be printed

AF0603 / AF0805 / AFI206 / AFI2I0 / AF20I0 / AF25I2

$1 \square$ E- 24 series: 3 digits, $\pm 5 \%, \geq 10 \Omega$

Fig. 2 Value $=10 \mathrm{~K} \Omega$
First two digits for significant figure and 3 rd digit for number of zeros

AF0603

24

E-24 series: 3 digits, $\pm \mathrm{I} \%$
One short bar under marking letter
Fig. 3 Value $=24 \Omega$

II[
E-96 series: 3 digits, $\pm 1 \%$
First two digits for E-96 marking rule and 3rd letter for number of zeros
Fig. $4 \quad$ Value $=12.4 \mathrm{~K} \Omega$
AF0805 / AFI206 / AFI2I0 / AF20I0 / AF25I2

102 Both E-24 and E-96 series: 4 digits, $\pm 1 \%$
Fig. 5 Value $=10 \mathrm{~K} \Omega$
First three digits for significant figure and 4 th digit for number of zeros

AFI2I8

E-24 series: 3 digits, $\pm 5 \%$
First two digits for significant figure and 3rd digit for number of zeros
Fig. 6 Value $=10 \mathrm{~K} \Omega$

Both E-24 and E-96 series: 4 digits, $\pm 1 \%$
First three digits for significant figure and 4th digit for number of zeros
Fig. 7 Value $=10 \mathrm{~K} \Omega$

NOTE

For further marking information, please see special data sheet "Chip resistors marking". Marking of AF series is the same as RC series

CONSTRUCTJON

The resistors are constructed on top of high grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a glass.
The composition of the glaze is adjusted to give the approximate required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations ($\mathrm{Ni} /$ matte tin) are added. See fig. 8

DJMENSIONS

Table I For outlines see fig. 8

TYPE	$\mathrm{L}(\mathrm{mm})$	$\mathrm{W}(\mathrm{mm})$	$H(\mathrm{~mm})$	$\mathrm{I}_{1}(\mathrm{~mm})$	$\mathrm{I}_{2}(\mathrm{~mm})$
AF020I	0.60 ± 0.03	0.30 ± 0.03	0.23 ± 0.03	0.12 ± 0.05	0.15 ± 0.05
AF0402	1.00 ± 0.05	0.50 ± 0.05	0.32 ± 0.05	0.20 ± 0.10	0.25 ± 0.10
AF0603	1.60 ± 0.10	0.80 ± 0.10	0.45 ± 0.10	0.25 ± 0.15	0.25 ± 0.15
AF0805	2.00 ± 0.10	1.25 ± 0.10	0.50 ± 0.10	0.35 ± 0.20	0.35 ± 0.20
AFI206	3.10 ± 0.10	1.60 ± 0.10	0.55 ± 0.10	0.45 ± 0.20	0.40 ± 0.20
AFI2I0	3.10 ± 0.10	2.60 ± 0.15	0.55 ± 0.10	0.45 ± 0.15	0.50 ± 0.20
AFI218	3.10 ± 0.10	4.60 ± 0.10	0.55 ± 0.10	0.45 ± 0.20	0.40 ± 0.20
AF20I0	5.00 ± 0.10	2.50 ± 0.15	0.55 ± 0.10	0.55 ± 0.15	0.50 ± 0.20
AF25I2	6.35 ± 0.10	3.10 ± 0.15	0.55 ± 0.10	0.60 ± 0.20	0.50 ± 0.20

OUTLINES

Fig. 8 Chip resistor outlines

ELECTRICAL CHARACTERISTJCS

Table 2

	CHARACTERISTICS						
TYPE	RESISTANCE RANGE	Operating Temperature Range		Max. Overload Voltage	Dielectric Withstanding Voltage	Temperature Coefficient of Resistance	Jumper Criteria

						Rated Current 0.5A
	$\pm 5 \%$ (E24),					
	1Ω to $10 \mathrm{M} \Omega$					Max. Current
AF020	$\pm 0.5 \%, \pm 1 \% \text { (E24/E96), }$ 1Ω to $10 M \Omega$	25 V	50 V	50 V	$10 \Omega<\mathrm{R} \leq 10 \mathrm{M} \Omega, \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1.0 A

FOOTPRJNT AND SOLDERING PROFULES

For recommended footprint and soldering profiles of AF-series is the same as RC-series. Please see the special data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY
Table 3 Packing style and packaging quantity

PACKING STYLE	REEL	AF020I	AF0402	AF0603/0805/	AFI210	AFI218/2010/
	DIMENSION			1206		2512
Paper taping reel (R)	7" (178 mm)	10,000/20,000	10,000/20,000	5,000	5,000	--
	$13^{\prime \prime}(330 \mathrm{~mm})$	50,000	50,000	20,000	20,000	--
Embossed taping reel (K)	7" (178 mm)	--	--	--	--	4,000

NOTE

I. For paper/embossed tape and reel specification/dimensions, please see the special data sheet "Chip resistors packing".

PUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

```
AFO2OI - AF25I2 Range:
```

$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$ (Fig. 7)

POWER RATING

Each type rated power at $70^{\circ} \mathrm{C}$:
AFO20I $=1 / 20 \mathrm{~W}(0.05 \mathrm{~W})$
AF0402=I/I6 W (0.0625W)
AF0603=I/IO W (0.IW)
AF0805=I/8 W (0.125W)
AFI206=1/4 W (0.25W)
AFI2IO $=1 / 2 \mathrm{~W}(0.5 \mathrm{~W})$
AFI218=IW
AF2010=3/4W (0.75W)
AF25I2=IW

RATED VOLTAGE

Fig. 7 Maximum dissipation ($\mathrm{P}_{\text {max }}$) in percentage of rated power as a function of the operating ambient temperature ($T_{\text {amb }}$)

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:
$V=\sqrt{(P \times R)}$
Where
$\mathrm{V}=$ Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)
$R=$ Resistance value (Ω)

TESTS AND REQUNREMENS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Temperature	IEC $60 I I 5-I 4.8$	At $+25 /-55^{\circ} \mathrm{C}$ and $+25 /+125^{\circ} \mathrm{C}$	Refer to table 2
Coefficient of Resistance (T.C.R.)	MIL-STD-202 Method 304	Formula:	
		T.C.R $=\frac{R_{2}-R_{1}}{R_{1}\left(t_{2}-t_{1}\right)} \times 10^{6}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$	
	Where		
	$\mathrm{t}_{1}=+25^{\circ} \mathrm{C}$ or specified room temperature		
	$\mathrm{t}_{2}=-55^{\circ} \mathrm{C}$ or $+125^{\circ} \mathrm{C}$ test temperature		
	$\mathrm{R}_{1}=$ resistance at reference temperature in ohms		
	$\mathrm{R}_{2}=$ resistance at test temperature in ohms		

Life/Endurance	IEC 60\|I5-I 4.25 MIL-STD-202 Method 108	At $70 \pm 2^{\circ} \mathrm{C}$ for 1,000 hours, RCWV applied for 1.5 hours on, 0.5 hour off, still-air required	$\pm(1.0 \%+0.05 \Omega)$
			$<100 \mathrm{~m} \Omega$ for Jumper
High	MIL-STD-202 Method I08	1,000 hours at $155 \pm 3^{\circ} \mathrm{C}$	$\pm(1.0 \%+0.05 \Omega)$
Temperature Exposure		unpowered	$<100 \mathrm{~m} \Omega$ for Jumper

Moisture Resistance	MIL-STD-202 Method I06	Each temperature / humidity cycle is defined at 8 hours, 3 cycles / 24 hours for 10 d. with $25^{\circ} \mathrm{C} /$ $65^{\circ} \mathrm{C} 95 \%$ R.H, without steps 7a \& 7b, unpowered Parts mounted on test-boards, without condensation on parts	$\pm(0.5 \%+0.05 \Omega)$ for $0.5 \%, 1 \%$ tol. $\pm(1.0 \%+0.05 \Omega)$ for 5% tol. $<100 \mathrm{~m} \Omega$ for Jumper
Thermal Shock	MIL-STD-202 Method I07	$-55 /+125^{\circ} \mathrm{C}$ Number of cycles required is 300 . Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes	$\pm(0.5 \%+0.05 \Omega)$ for $0.5 \%, 1 \%$ tol. $\pm(1 \%+0.05 \Omega)$ for 5% tol. $<100 \mathrm{~m} \Omega$ for Jumper
Short Time Overload	IEC60\|15-1 4.13	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 seconds at room temperature	$\pm(1.0 \%+0.05 \Omega)$ No visible damage
Bending	IEC 60115-1 4.33	Chips mounted on a 90 mm glass epoxy resin PCB (FR4) Bending: 0201/0402: 5 mm 0603/0805: 3 mm 1206 \& above: 2 mm Bending time: 60 ± 5 seconds	$\pm(1.0 \%+0.05 \Omega)$ $<100 \mathrm{~m} \Omega$ for Jumper No visible damage

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Biased Humidity	MIL-STD-202 method 103	I,000 hours; $85^{\circ} \mathrm{C} / 85 \%$ R.H., 10% of operating power. Measurement at 24 ± 4 hours after test conclusion.	$\begin{aligned} & \|\Omega \leq R \leq\| M \Omega: \pm(3 \%+0.05 \Omega) \\ & \|M \Omega<R \leq\| 0 M \Omega: \pm(5 \%+0.05 \Omega) \end{aligned}$
Solderability			
- Resistance to Soldering Heat	IEC 60115-I 4.18 MIL-STD-202 Method 215	Condition B, no pre-heat of samples Lead-free solder, $260 \pm 5^{\circ} \mathrm{C}, 10 \pm \mid$ seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	$\pm(0.5 \%+0.05 \Omega)$ for $0.5 \%, 1 \%$ tol. $\pm(1.0 \%+0.05 \Omega)$ for 5% tol. $<50 \mathrm{~m} \Omega$ for Jumper No visible damage
- Wetting	J-STD-002	Electrical test not required	Well tinned ($\geq 95 \%$ covered)
		Magnification IOX	No visible damage
		SMD conditions:	
		(a) Method B, aging 4 hours at $155^{\circ} \mathrm{C}$ dry heat, lead-free solder bath at $245{ }^{\circ} \mathrm{C}$ (b) Method B , dipping at $215^{\circ} \mathrm{C}$ for 3 seconds	
FOS	ASTM-B-809-95*	Sulfur 750 hours, $105^{\circ} \mathrm{C}$. unpowered	$\pm(4.0 \%+0.05 \Omega)$
	* Modified		

REVISION HISTORY
REVISION DATE CHANGE NOTIFICATION DESCRIPTION

Version 5	Jun. 21, 2016	-	- Update test and requirement
Version 4	Dec. 24, 2015	-	- Update Dielectric Withstanding Voltage\& Resistance value
Version 3	Apr. 01,2015	-	- Modified test and requirements
Version 2	Nov. 20, 2014	-	- Tests and requirement update
Version I	Sep. 27, 2013	-	- Size 0201/I2 $0 / 1218 / 2010 / 2512$ extend
Version 0	Jan 07, 2011	-	- First issue of this specification

" Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products are unchanged. Any product change will be announced by PCN."

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Thick Film Resistors - SMD category:
Click to view products by Yageo manufacturer:
Other Similar products are found below :
CRCW04028R20JNEE CRCW06036K80FKEE CRG1206F1K58 CRL0603-FW-R700ELF M55342K06B6E19RWL RC1005F1072CS RC1005F471CS RC1005F4751CS RCP0603W100RGED RCWP72251K47FKWB RLR05C7501GPB14 RLR07C5111FSBSL ERJ1GMF1R00C ERJ-1GMF1R20C ERJ-1GMF2R55C ERJ-1GMF8R66C 25121WF1003T4E 25121WF220JT4E 25121WF470KT4E 25.501.3653.0 290-1.0M-RC 292-1.0M-RC 292-4.7K-RC 25121WF100KT4E 25121WF4700T4E 292-470K-RC 302-1.0M-RC CPG1206F10KC CRCW02011R00FXED CRCW060315K0FKEE CRCW06031K30FKEC CRCW060320K5FKEE CRG0201F10K RCG0402150RFKED RCG04023K92FKED RCP2512B100RGWB RCWP110010R0FKS3 RCWP11002K00FKS3 RCWP12061K00FKS2 3520510RJT 352075KJT M55342K11B9E53RUL RMC16-102JT RMC1JPTE TR0603MR-075K1L MM02041001FRC MMB0207-50-10R0FTR-L 5-2176094-4 35202K7JT WF06Q1000FTL

