DATA SHEET

 GITI-SULFURATED GIIP RESSSTORS AF 122 (4Pin/2R) / AF124 (8Pin/4R) / AF162 (4Pin/ 2R)/ AF164 (8Pin/ 4R)
SCOPE

This specification describes AFI22/AFI24/AFI62/AFI64 (convex)series chip resistor arrays with lead-free terminations made by thick film process.

APPLICATIONS

- Terminal for SDRAM and DDRAM
- High-end Computer \& Multimedia Electronics in high sulfur environment
- Consume electronic equipments: PDAs, PNDs
- Mobile phone, telecom...

FEATURES

- AEC-Q200 qualified
- RoHS compliant
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production
- Halogen Free Epoxy
- Moisture sensitivity level: MSL I

ORDERJNG INFORMATION - GLOBAL PART NUMBER \& I2NS

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

AF XX X - X X XX XXXX L

(1) (2) (3) (4) (5) (6) (7)
(I) SIZE
$12=0402 \times 2(0404)$
$12=0402 \times 4(0408)$
$16=0603 \times 2(0606)$
$16=0603 \times 4$ (06I2)
(2) NUMBER OF RESISTORS
$2=2$ resistors
$4=4$ resistors
(3) TOLERANCE
$F= \pm 1 \%$
$J= \pm 5 \%$ (for Jumper ordering, use code of J)
(4) PACKAGING TYPE
$R=$ Paper taping reel
(5) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec
(6) TAPING REEL
$07=7$ inch dia. Reel
$13=13$ inch dia. Reel
(7) RESISTANCE VALUE

There are $2 \sim 4$ digits indicated the resistor value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed resistance rules show in table of "Resistance rule of global part number".

Resistance rule of global part number

Resistance code rule	Example
OR	OR = jumper
$\begin{aligned} & \text { XRXX } \\ & \text { (I to } 9.76 \Omega \text {) } \end{aligned}$	$\begin{array}{r} \mathrm{IR}=1 \Omega \\ \text { IR5 }=1.5 \Omega \\ 9 \mathrm{R} 76=9.76 \Omega \end{array}$
$\begin{aligned} & \text { XXRX } \\ & (10 \text { to } 97.6 \Omega) \end{aligned}$	$\begin{array}{r} 10 R=10 \Omega \\ 97 R 6=97.6 \Omega \end{array}$
$\begin{aligned} & \text { XXXR } \\ & (100 \text { to } 976 \Omega) \end{aligned}$	$100 \mathrm{R}=100 \Omega$
$\begin{aligned} & \hline X K X X \\ & (I \text { to } 9.76 \mathrm{~K} \Omega) \end{aligned}$	$\begin{array}{r} 1 \mathrm{~K}=1,000 \Omega \\ 9 \mathrm{~K} 76=9760 \Omega \end{array}$
$\begin{aligned} & \text { XM } \\ & (\mid M \Omega) \end{aligned}$	$1 \mathrm{M}=1,000,000 \Omega$

Ordering example

The ordering code of a AFI 22 convex chip resistor array, value l, 000Ω with $\pm 5 \%$ tolerance, supplied in 7 -inch tape reel is: AFI22-JR-07IKL.

NOTE

I. All our R-Chip products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER

No marking

AFI24 / AFI62 / AFI64

]

I-Digit marking
Fig. 2 Value $=0 \Omega$

316]

I\% E-24/E-96: $\mathrm{R} \geqq 100 \Omega$ 4digits
First three digits for significant figure and 4th digit for number of zeros
Fig. 3 Value $=316 \mathrm{~K} \Omega$

Е44

Fig. 3 Value $=240 \mathrm{~K} \Omega$
$5 \% \mathrm{E}-24: \mathrm{R} \geqq 10 \Omega$
First two digits for significant figure and 3rd digit for number of zeros

For further marking information, please refer to data sheet "Chip resistors marking".

CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal embedded into a glass and covered by a glass. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the external terminations (matte tin on Nibarrier) are added as shown in Fig.4.

OUTLINES

Fig. 4 Chip resistor outlines

DJMENSIONS

Table I

TYPE	AFI22	AFI24	AFI62	AFI64
B (mm)	0.24 ± 0.10	0.25 ± 0.15	0.35 ± 0.10	0.35 ± 0.15
H (mm)	$0.30+0.10 /-0.05$	0.45 ± 0.05	0.30 ± 0.10	0.65 ± 0.05
$\mathrm{H}_{1}(\mathrm{~mm})$	---	0.30 ± 0.05	--	0.50 ± 0.15
P (mm)	0.67 ± 0.05	0.50 ± 0.05	0.80 ± 0.05	0.80 ± 0.05
L (mm)	1.00 ± 0.10	2.00 ± 0.10	1.60 ± 0.10	3.20 ± 0.15
$\mathrm{~T}(\mathrm{~mm})$	0.30 ± 0.10	0.45 ± 0.10	0.40 ± 0.10	0.60 ± 0.10
$\mathrm{~W}_{1}(\mathrm{~mm})$	0.25 ± 0.10	0.30 ± 0.15	0.30 ± 0.10	0.30 ± 0.15
$\mathrm{~W}_{2}(\mathrm{~mm})$	1.00 ± 0.10	1.00 ± 0.10	1.60 ± 0.10	1.60 ± 0.15

For dimension, please refer to Table

Fig. 5 AFI22/I24/I62/164 series chip resistors dimension

SCHEMAJIC
For dimension, please refer to Fig. 5 and Table I

ELETRJCAL CHARACTERISTJCS

Table 2

CHARACTERISTICS	AFI22	AFI24	AFI 62		AFI64
Operating Temperature	$-50^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	$-55{ }^{\circ} \mathrm{C}$ to $+155{ }^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to	$155^{\circ} \mathrm{C}$	$-55{ }^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
Rated Power	$1 / 16 \mathrm{~W}$	$1 / 16 \mathrm{~W}$		1/16W	1/16W
Maximum Working Voltage	50 V	25 V		50 V	50V
Maximum Overload Voltage	100 V	50 V		I OOV	100 V
Dielectric Withstanding	100 V	100 V		I00V	I00V
Resistance Range	$\begin{array}{r} 5 \% \text { (E24) I } \Omega \text { to } I \mathrm{M} \Omega \\ 1 \% \text { (E24/E96) } 10 \Omega \text { to } \mathrm{I} \Omega \\ \text { Jumper < } 50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 5 \% \text { (E24) I } \Omega \text { to I } \mathrm{M} \Omega \\ \text { I\% (E24/E96) I } \Omega \text { to I } \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 5 \% \text { (E24) I } \Omega \\ \text { I\% (E24/E96) I } \Omega \\ \text { Jumper } \end{array}$	$\begin{aligned} & =1 \mathrm{M} \Omega \\ & =1 \mathrm{M} \Omega \\ & =50 \mathrm{~m} \Omega \end{aligned}$	$\begin{array}{r} 5 \% \text { (E24) I } \Omega \text { to } \mathrm{I} \mathrm{M} \Omega \\ \% \text { (E24/E96) I } \Omega \text { to I } \mathrm{M} \Omega \\ \text { Jumper < } 50 \mathrm{~m} \Omega \end{array}$
Temperature Coefficient		$\begin{aligned} & \Omega \leq R \leq 10 \Omega \pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \Omega \leq R \leq 1 \mathrm{M} \Omega \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$			$\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Jumper Criteria	Rated Current 0.5 A Maximum Current 1.0 A	$\begin{array}{rr} \text { Rated Current } & 1.0 \mathrm{~A} \\ \text { Maximum Current } & 2.0 \mathrm{~A} \end{array}$	Rated Current Maximum Current	1.0 A 2.0 A	Rated Current I.0A Maximum Current 2.0A

POOTPRINT AND SOLDERING PROFULES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

PACKING STYLE	REEL DIMENSION	AFI22	AFI24	AFI62	AFI64
Paper Taping Reel (R)	7" (178 mm)	10,000 units	10,000 units	5,000 units	5,000 units
	13 " $(330 \mathrm{~mm})$	50,000 units	40,000 units	---	20,000 units

NOTE

I. For paper tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

POWER RATING

AFI22 / AFI24 / AFI62 / AFI64 rated power at $70^{\circ} \mathrm{C}$ is $1 / 16 \mathrm{~W}$

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:
$V=\sqrt{(P \times R)}$
or max. working voltage whichever is less
Where
$\mathrm{V}=$ Continuous rated DC or

Fig. 7 Maximum dissipation (P) in percentage of rated power as a function of the operating ambient temperature ($\mathrm{T}_{\mathrm{amb}}$) AC (rms) working voltage (V)
$\mathrm{P}=$ Rated power (W)
$R=$ Resistance value (Ω)

TESTS AND REGUIREMENTS

Table 4 Test condition, procedure and requirements

| TEST | TEST METHOD | PROCEDURE | REQUIREMENTS |
| :--- | :--- | :--- | :--- | :--- |
| Life/ | MIL-STD-202-method 108 | 1,000 hours at $70 \pm 2^{\circ} \mathrm{C}$ applied RCWV | $\pm(2 \%+0.05 \Omega)$ |
| Endurance | IEC $60 \mid 15-14.25$ | 1.5 hours on, 0.5 hour off, still air required | $<100 \mathrm{~m} \Omega$ for Jumper |

High Temperature	MIL-STD-202-method 108	1,000 hours at maximum operating temperature depending on specification, Exposure	$\pm(1 \%+0.05 \Omega)$
	Tolerances: $155 \pm 3^{\circ} \mathrm{C}$	$<50 \mathrm{~m} \Omega$ for Jumper	

Moisture Resistance	MIL-STD-202-method I06	Each temperature / humidity cycle is defined at	$\pm(2 \%+0.05 \Omega)$		
		8 hours (method 106G), 3 cycles / 24 hours for IOd with $25^{\circ} \mathrm{C} / 65^{\circ} \mathrm{C} 95 \%$ R.H, without steps $7 \mathrm{a} \& 7 \mathrm{~b}$, unpowered	$<100 \mathrm{~m} \Omega$ for Jumper		
		Parts mounted on test-boards, without condensation on parts			
		Measurement at 24 ± 2 hours after test conclusion			
Thermal Shock	MIL-STD-202-method 107	$-55 /+125^{\circ} \mathrm{C}$	$\pm(1 \%+0.05 \Omega)$		
		Note: Number of cycles required is 300 . Devices mounted	$<50 \mathrm{~m} \Omega$ for Jumper		
		Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air - Air			
Short Time Overload	IEC60\|I5-	4.13	2.5 times RCWV or maximum overload voltage whichever is less for 5 sec at room temperature	$\pm(2 \%+0.05 \Omega)$	
			< $50 \mathrm{~m} \Omega$ for Jumper		
			No visible damage		
Board Flex/ Bending	IEC60\|	5 -	4.33	Device mounted on PCB test board as described, only I board bending required 3 mm bending	$\pm(1 \%+0.05 \Omega)$
			$<50 \mathrm{~m} \Omega$ for Jumper		
			No visible damage		
		Bending time: 60 ± 5 seconds			
		Ohmic value checked during bending			

\qquad

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability			
- Wetting	J-STD-002 test B	Electrical Test not required	Well tinned ($\geq 95 \%$ covered)
		Magnification 50X	No visible damage
		SMD conditions:	
		${ }^{\text {st }}$ step: method B , aging 4 hours at $155^{\circ} \mathrm{C}$ dry heat	
		$2^{\text {nd }}$ step: leadfree solder bath at $245 \pm 3^{\circ} \mathrm{C}$	
		Dipping time: 3 ± 0.5 seconds	
- Leaching	J-STD-002 test D	Leadfree solder, $260^{\circ} \mathrm{C}, 30$ seconds immersion time	No visible damage
- Resistance to Soldering Heat	IEC 60115-1 4.18	Condition B, no pre-heat of samples	$\pm(1 \%+0.05 \Omega)$
	MIL-STD-202 Method 215	Leadfree solder, $260^{\circ} \mathrm{C}, 10$ seconds	$<50 \mathrm{~m} \Omega$ for Jumper
		immersion time	No visible damage
		Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	
FOS	ASTM-B-809-95*	Sulfur 750 hours, $105^{\circ} \mathrm{C}$, unpowered	$\pm(4.0 \%+0.05 \Omega)$
	*Modified		$<100 \mathrm{~m} \Omega$ for Jumper

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 5	Mar. 20, 2017	-	- Modify AFI24/164 Equivalent Circuit Diagram
Version 4	Jun. 23, 2016	-	- AEC-Q200 qualified
Version 3	Nov. 17, 2015	-	- Add in AFI 62
Version 2	May 29,2015	-	- Add in AFI 64
Version I	Aug. 15, 2014	-	- Update AFI24 dimensions
Version 0	Oct. 02, 2013	-	- First issue of this specification

"Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Resistor Networks \& Arrays category:
Click to view products by Yageo manufacturer:
Other Similar products are found below :
M8340105K1002FGD03 M8340105K3301JCD03 M8340106M2002GCD03 M8340107K1471FGD03 M8340107K2002GCD03
M8340107K2261FGD03 M8340107M1501GGD03 M8340108K1001FCD03 M8340108K3240FGD03 M8340108K4991FGD03
M8340108K6192FGD03 M8340109K2872FCD03 M8340109MA010GHD03 EXB-24N121JX EXB-24N330JX EXB-24N470JX
744C083101JTR EXB-U14360JX EXB-U18390JX 744C083270JTR 745C102472JP 767161104G 770101223 ACAS06S0830339P100
ACAS06S0830343P100 ACAS06S0830344P100 RM2012A-102/104-PBVW10 RM2012A-102503-PBVW10 8B472TR4 268-15K
ACAS06S0830341P100 ACAS06S0830342P100 ACAS06S0830345P100 EXB-U14470JX EXB-U18330JX 266-10K
M8340102K1051FBD04 M8340105M1001JCD03 M8340106K4701GGD03 M8340107K1004GGD03 M8340108K1000GGD03
M8340108K1202GGD03 M8340108K3901GGD03 M8340108K4992FGD03 M8340108K5111FGD03 M8340109K2202GCD03
RKC8BD104J DFNA100-1TS 745X101473JP RMKD408-10KBW

