SCOPE

This specification describes AFI22/AFI24/AFI62/AFI64 (convex)series chip resistor arrays with lead-free terminations made by thick film process.

APPLICATIONS

- Terminal for SDRAM and DDRAM
- High-end Computer \& Multimedia Electronics in high sulfur environment
- Consume electronic equipments: PDAs, PNDs
- Mobile phone, telecom...

FEATURES

- AEC-Q200 qualified
- RoHS compliant
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production
- Halogen Free Epoxy
- Moisture sensitivity level: MSL I

ORDERJNG INFORMATION - GLOBAL PART NUMBER 星 I2NS

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

AF XX X - X X XX XXXX L

(1) (2) (3) (4) (5) (6) (7)
(I) SIZE
$12=0402 \times 2(0404)$
$12=0402 \times 4(0408)$
$16=0603 \times 2(0606)$
$16=0603 \times 4$ (06 I2)
(2) NUMBER OF RESISTORS
$2=2$ resistors
$4=4$ resistors
(3) TOLERANCE
$F= \pm 1 \%$
$\mathrm{J}= \pm 5 \%$ (for Jumper ordering, use code of J)
(4) PACKAGING TYPE
$R=$ Paper taping reel
(5) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec
(6) TAPING REEL
$07=7$ inch dia. Reel
$13=13$ inch dia. Reel
(7) RESISTANCE VALUE

There are 2~4 digits indicated the resistor value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed resistance rules show in table of "Resistance rule of global part number".

Resistance rule of global part number

Resistance code rule	Example
OR	OR = jumper
$\begin{aligned} & \text { XRXX } \\ & \text { (I to } 9.76 \Omega \text {) } \end{aligned}$	$\begin{array}{r} 1 \mathrm{R}=1 \Omega \\ 1 \mathrm{R} 5=1.5 \Omega \\ 9 \mathrm{R} 76=9.76 \Omega \end{array}$
$\begin{aligned} & \text { XXRX } \\ & (10 \text { to } 97.6 \Omega) \\ & \hline \end{aligned}$	$\begin{array}{r} 10 R=10 \Omega \\ 97 R 6=97.6 \Omega \end{array}$
$\begin{aligned} & \text { XXXR } \\ & (100 \text { to } 976 \Omega) \end{aligned}$	$100 \mathrm{R}=100 \Omega$
$\begin{aligned} & X K X X \\ & (1 \text { to } 9.76 \mathrm{~K} \Omega) \end{aligned}$	$\begin{array}{r} 1 \mathrm{~K}=1,000 \Omega \\ 9 \mathrm{~K} 76=9760 \Omega \end{array}$
$\begin{aligned} & \text { XM } \\ & (1 \mathrm{M} \Omega) \end{aligned}$	$1 M=1,000,000 \Omega$

Ordering example

The ordering code of a AFI22 convex chip resistor array, value l, 000Ω with $\pm 5 \%$ tolerance, supplied in 7 -inch tape reel is: AFI22-JR-07IKL.

NOTE

I. All our R-Chip products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER

AFI 24 / AFI 62 / AFI 64

I

I-Digit marking
Fig. 2 Value $=0 \Omega$

71]

I\% E-24/E-96: $\mathrm{R} \geqq 100 \Omega$ 4digits
First three digits for significant figure and 4th digit for number of zeros
Fig. 3 Value $=316 \mathrm{~K} \Omega$

래

4n) mens
Fig. 3 Value $=240 \mathrm{~K} \Omega$
$5 \% \mathrm{E}-24: \mathrm{R} \geqq 10 \Omega$
First two digits for significant figure and 3rd digit for number of zeros

For further marking information, please refer to data sheet "Chip resistors marking".

CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal embedded into a glass and covered by a glass. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the external terminations (matte tin on Nibarrier) are added as shown in Fig.4.

OUTLINES

D]MENSIONS

Table I

TYPE	AFI22	AFI24	AFI62	AFI64
B (mm)	0.24 ± 0.10	0.25 ± 0.15	0.35 ± 0.10	0.35 ± 0.15
H (mm)	$0.30+0.10 /-0.05$	0.45 ± 0.05	0.30 ± 0.10	0.65 ± 0.05
$\mathrm{H}_{1}(\mathrm{~mm})$	--	0.30 ± 0.05	--	0.50 ± 0.15
$\mathrm{P}(\mathrm{mm})$	0.67 ± 0.05	0.50 ± 0.05	0.80 ± 0.05	0.80 ± 0.05
$\mathrm{~L}(\mathrm{~mm})$	1.00 ± 0.10	2.00 ± 0.10	1.60 ± 0.10	3.20 ± 0.15
$\mathrm{~T}(\mathrm{~mm})$	0.30 ± 0.10	0.45 ± 0.10	0.40 ± 0.10	0.60 ± 0.10
W $_{1}(\mathrm{~mm})$	0.25 ± 0.10	0.30 ± 0.15	0.30 ± 0.10	0.30 ± 0.15
$W_{2}(\mathrm{~mm})$	1.00 ± 0.10	1.00 ± 0.10	1.60 ± 0.10	1.60 ± 0.15

Fig. 5 AFI22/I24/I62/164 series chip resistors dimension

SCHEMATJC
For dimension, please refer to Fig. 5 and Table I

ELEGTRJCAL CHARACTERISTJCS

Table 2

POOTPRJNT AND SOLDERING PROFLES

For recommended footprint and soldering profiles, please refer to data sheet
"Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTJTY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AFI22	AFI24	AFI62	AFI64
Paper Taping Reel (R)	$7^{\prime \prime}(178 \mathrm{~mm})$	10,000 units	10,000 units	5,000 units	5,000 units
	$13^{\prime \prime}(330 \mathrm{~mm})$	50,000 units	40,000 units	---	20,000 units

NOTE

I. For paper tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIP『ION

POWER RATING

AFI22 / AFI24 / AFI 62 / AFI 64 rated power at $70^{\circ} \mathrm{C}$ is $1 / 16 \mathrm{~W}$

Rated voltage

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$
V=\sqrt{(P \times R)}
$$

or max. working voltage whichever is less

Where

$\mathrm{V}=$ Continuous rated DC or

Fig. 7 Maximum dissipation (P) in percentage of rated power as a function of the operating ambient temperature ($\mathrm{T}_{\mathrm{amb}}$) AC (rms) working voltage (V)
$\mathrm{P}=$ Rated power (W)
$R=$ Resistance value (Ω)

TESTS AND RE@UIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature	AEC-Q200 Test 3	1,000 hours at $T_{A}=155^{\circ} \mathrm{C}$, unpowered	$\pm(2.0 \%+0.05 \Omega)$
Exposure	MIL-STD-202 Method 108		$<50 \mathrm{~m} \Omega$ for Jumper

Moisture	AEC-Q200 Test 6	Each temperature / humidity cycle is defined at	$\pm(2.0 \%+0.05 \Omega)$
Resistance	MIL-STD-202 Method 106	8 hours (method 106 F$), 3$ cycles / 24 hours for	$<100 \mathrm{~m} \Omega$ for Jumper
		10 d with $25^{\circ} \mathrm{C} / 65^{\circ} \mathrm{C} 95 \%$ R.H, without steps	
	$7 \mathrm{a} \& 7 \mathrm{~b}$, unpowered		

Biased	AEC-Q200 Test 7	1,000 hours; $85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$	$\pm(3.0 \%+0.05 \Omega)$
Humidity	MIL-STD-202 Method 103	10% of operating power	$<100 \mathrm{~m} \Omega$ for Jumper
		Measurement at $24+4$ hours after test conclusion	

Operational Life	AEC-Q200 Test 8	1,000 hours at $125^{\circ} \mathrm{C}$, derated voltage applied for	$\pm(3.0 \%+0.05 \Omega)$
	MIL-STD-202 Method I08	1.5 hours on, 0.5 hour off, still-air required	$<100 \mathrm{~m} \Omega$ for Jumper

Resistance to Soldering Heat	AEC-Q200 Test 15	Condition B, no pre-heat of samples	$\pm(1.0 \%+0.05 \Omega)$
	MIL-STD-202 Method 210	Lead-free solder, $260 \pm 5^{\circ} \mathrm{C}, 10 \pm \mid$ seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	$<50 \mathrm{~m} \Omega$ for Jumper
			No visible damage
Thermal Shock	AEC-Q200 Test 16	$-55 /+125^{\circ} \mathrm{C}$	$\pm(1.0 \%+0.05 \Omega)$
	MIL-STD-202 Method 107	Number of cycles is 300 . Devices mounted	$<50 \mathrm{~m} \Omega$ for Jumper
		Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air - Air	

ESD	AEC-Q200 Test I7	Human Body Model,	$\pm(3.0 \%+0.05 \Omega)$
AEC-Q200-002	I pos. +1 neg. discharges	$<50 \mathrm{~m} \Omega$ for Jumper	
		$162 / 124: 500 \mathrm{~V}$	

\qquad

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability	AEC-Q200 Test I8	Electrical Test not required Magnification 50 X	Well tinned ($\geq 95 \%$ covered)
- Wetting	J-STD-002	SMD conditions:	No visible damage
		(a) Method B, aging 4 hours at $155^{\circ} \mathrm{C}$ dry heat,	
	dipping at $235 \pm 3^{\circ} \mathrm{C}$ for 5 ± 0.5 seconds.		
	(b) Method B, steam aging 8 hours, dipping at		
	$215 \pm 3^{\circ} \mathrm{C}$ for 5 ± 0.5 seconds.		
	(c) Method D, steam aging 8 hours, dipping at		
	$260 \pm 3^{\circ} \mathrm{C}$ for 30 ± 0.5 seconds.		

Board Flex	AEC-Q200 Test 21	Chips mounted on a 90mm glass epoxy resin	$\pm(1.0 \%+0.05 \Omega)$
	AEC-Q200-005	PCB (FR4)	$<50 \mathrm{~m} \Omega$ for Jumper

Temperature	MIL-STD-202 Method 304	At $+25 /-55^{\circ} \mathrm{C}$ and $+25 /+125^{\circ} \mathrm{C}$	Refer to table 2
Coefficient of			
Resistance (T.C.R.)	Formula:		

T.C.R $=\frac{R_{2}-R_{1}}{R_{1}\left(t_{2}-t_{1}\right)} \times 10^{6}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$

Where
$\mathrm{t}_{1}=+25^{\circ} \mathrm{C}$ or specified room temperature
$\mathrm{t}_{2}=-55^{\circ} \mathrm{C}$ or $+125^{\circ} \mathrm{C}$ test temperature
$\mathrm{R}_{1}=$ resistance at reference temperature in ohms
$\mathrm{R}_{2}=$ resistance at test temperature in ohms

| Short Time
 Overload | IEC60\| I5-| 4.13 | 2.5 times of rated voltage or maximum
 overload voltage whichever is less for 5 sec
 at room temperature | $\pm(2.0 \%+0.05 \Omega)$
 $<50 \mathrm{~m} \Omega$ for Jumper |
| :--- | :--- | :--- | :--- |
| FOS | ASTM-B-809-95* | Sulfur 750 hours, $105^{\circ} \mathrm{C}$, unpowered | $\pm(4.0 \%+0.05 \Omega)$ |
| | *Modified | | $<100 \mathrm{~m} \Omega$ for Jumper |

\qquad

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 6	Apr. 21, 2021	-	- Upgrade to Automotive Grade and voltage of AFI24 updated, TCR of AFI 64 updated.
Version 5	Mar. 20, 2017	-	- Modify AFI24/I64 Equivalent Circuit Diagram
Version 4	Jun. 23, 2016	-	- AEC-Q200 qualified
Version 3	Nov. 17, 2015	-	- Add in AFI 62
Version 2	May 29,2015	-	- Add in AFI 64
Version I	Aug. 15, 2014	-	- Update AFI24 dimensions
Version 0	Oct. 02, 2013	-	- First issue of this specification

"Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Resistor Networks \& Arrays category:
Click to view products by Yageo manufacturer:
Other Similar products are found below :
CSC06A0122K0GEJ CSC08A01470KGEK M8340105K1002FGD03 M8340105M1202GGD03 M8340105M4700JGD03 M8340107K2002GCD03 M8340108K1001FCD03 M8340108K3240FGD03 M8340108K4991FGD03 M8340108K6202GGD03 M8340109MA010GHD03 744C083101JTR EXB-U18240JX 744C083270JTR 745C102472JP 745X101103JP MDP1603100KGE04 770101223 MNR04M0APJ471 MNR14E0APJ100 MNR18E0APJ102 MNR18E0APJ680 ACAS06S0830339P100 ACAS06S0830343P100 ACAS06S0830344P100 RAVF164DJT68K0 RM2012A-102/104-PBVW10 RM2012A-102503-PBVW10 RM2012A-502104-PBVW10 NRSN04I4J220TRF NRSN06I4J330TRF NRSNA4I4J330TRF 8B472TR4 ACAS06S0830341P100 ACAS06S0830342P100

ACAS06S0830345P100 EXB-18N390JX EXB-V4N100JV CSC09A014K70JEK M8340105K1502GGD03 M8340105K8251FGD03
M8340105M1001JCD03 M8340105M1002GCD03 M8340106K4701GGD03 M8340107K1004GGD03 M8340108K1000FGD03
M8340108K1000GGD03 M8340108K1002GGD03 M8340108K1202GGD03 M8340108K2001FCD03

