

Product specification – April 21, 2021 V.6

DATA SHEET

ANTI-SULFURATED ARRAY CHIP RESISTORS AUTOMOTIVE GRADE

AF122 (4Pin/2R) / AF124 (8Pin/4R) / AF162 (4Pin/2R)/ AF164 (8Pin/4R)

5%, 1% sizes 2 × 0402, 4 x 0402, 2 x 0603, 4 x 0603 RoHS compliant

YAGEO

8

<u>SCOPE</u>

This specification describes AF122/AF124/AF162/AF164 (convex)series chip resistor arrays with lead-free terminations made by thick film process.

Chip Resistor Surface Mount

APPLICATIONS

- Terminal for SDRAM and DDRAM
- High-end Computer & Multimedia Electronics in high sulfur environment
- Consume electronic equipments: PDAs, PNDs
- Mobile phone, telecom...

<u>FEATURES</u>

- AEC-Q200 qualified
- RoHS compliant
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production
- Halogen Free Epoxy
- Moisture sensitivity level: MSL I

ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

AF

GLOBAL PART NUMBER (PREFERRED)

SERIES

AF XX X - X X X XX XXXX L

(1) (2) (3) (4) (5) (6) (7)	
-----------------------------	--

I)	SI	Ζ	E
----	----	---	---

$12 = 0402 \times 2 (0404)$	
$12 = 0402 \times 4 \ (0408)$	
$16 = 0603 \times 2 \ (0606)$	
$ 6 = 0603 \times 4 \ (06 2)$	

(2) NUMBER OF RESISTORS

2 = 2 resistors

4 = 4 resistors

(3) TOLERANCE

 $F = \pm 1\%$

 $J = \pm 5\%$ (for Jumper ordering, use code of J)

(4) PACKAGING TYPE

R = Paper taping reel

(5) TEMPERATURE COEFFICIENT OF RESISTANCE

– = Base on spec

(6) TAPING REEL

07	=	7 ii	nch (dia. F	Reel
13	=	13	inch	dia.	Reel

(7) RESISTANCE VALUE

There are 2~4 digits indicated the resistor value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed resistance rules show in table of "Resistance rule of global part number".

Resistance rule o number	f global part
Resistance code rule	Example
OR	0R = Jumper
XRXX (Ι to 9.76 Ω)	IR = ΙΩ IR5 = I.5 Ω 9R76 = 9.76 Ω
XXRX (10 to 97.6 Ω)	וסת = 10 C 97R6 = 97.6 C
XXXR (100 to 976 Ω)	100R = 100 Ω
XKXX (1 to 9.76 K Ω)	ικ = 1,000 Ω 9κ76 = 9760 Ω
XM (Ι ΜΩ)	IM = 1,000,000 Ω

ORDERING EXAMPLE

The ordering code of a AF122 convex chip resistor array, value $1,000\Omega$ with ±5% tolerance, supplied in 7-inch tape reel is: AF122-JR-071KL.

NOTE

- All our R-Chip products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER

MARKING

AFI22

For further marking information, please refer to data sheet "Chip resistors marking".

CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal embedded into a glass and covered by a glass. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the external terminations (matte tin on Nibarrier) are added as shown in Fig.4.

DIMENSIONS

Table I				
TYPE	AFI22	AFI24	AF162	AF164
B (mm)	0.24±0.10	0.25±0.15	0.35±0.10	0.35±0.15
H (mm)	0.30+0.10/-0.05	0.45±0.05	0.30±0.10	0.65±0.05
H⊢(mm)		0.30±0.05		0.50±0.15
P (mm)	0.67±0.05	0.50±0.05	0.80±0.05	0.80±0.05
L (mm)	1.00±0.10	2.00±0.10	1.60 ± 0.10	3.20±0.15
T (mm)	0.30±0.10	0.45±0.10	0.40±0.10	0.60±0.10
W _I (mm)	0.25±0.10	0.30±0.15	0.30±0.10	0.30±0.15
W2 (mm)	1.00±0.10	1.00±0.10	1.60 ± 0.10	1.60±0.15

OUTLINES

Product specification

3 8

SCHEMATIC

For dimension, please refer to Fig. 5 and Table 1	4 3	5 6 7 8	
	AF122 / 162		AF124 / 164
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	1 2	1 2 3 4	
⊢ Fig. 6 Equivalent circuit diagram	R1 = R2	R1 = R2 = R3 = R4	YNSC078-1

AF

ELECTRICAL CHARACTERISTICS

Chip Resistor Surface Mount

Table 2								
CHARACTERISTICS		AF122		AFI24		AF162	A	FI64
Operating Temperature	–55 °C to	+155 ℃	–55 °C to -	+155 °C	–55 °C to	+155 ℃	−55 °C to +1	55 °C
Rated Power		1/16 W		1/16 W		1/16W	I	/16W
Maximum Working Voltage		50 V		50 V		50V		50V
Maximum Overload Voltage	e 100 V			100 V		100V		100V
Dielectric Withstanding		100 V		100 V		100V		100V
Resistance Range	5% (E24) Ι Ω to Ι ΜΩ Ι% (E24/E96) ΙΟ Ω to Ι ΜΩ Jumper < 50 mΩ		5% (E24) ΙΩt Ι% (E24/E96) ΙΩt Jumper <	co Ι ΜΩ co Ι ΜΩ c 50 mΩ	5% (E24) Ι Ω Ι% (E24/E96) Ι Ω Jumper	to Ι ΜΩ to Ι ΜΩ < 50 mΩ	5% (E24) Ι Ω to Ι% (E24/E96) Ι Ω to Jumper < 5	ΙΜΩ ΙΜΩ 0 mΩ
Temperature Coefficient		10	$ \Omega \leq R \leq 0 \Omega \pm 2]$ $0 \Omega < R \leq M\Omega \pm 2]$	50 ppm/° 00 ppm/°	c c			
lumper Criteria	Rated Current	0.5 A	Rated Current	1.0 A	Rated Current	1.0 A	Rated Current	1.0A
,	Maximum Current	1.0 A	Maximum Current	2.0 A	Maximum Current	2.0 A	Maximum Current	2.0A

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing sty	le and packaging quantity				
PACKING STYLE	REEL DIMENSION	AF122	AFI24	AFI62	AFI64
Paper Taping Reel (R)	7" (178 mm)	10,000 units	10,000 units	5,000 units	5,000 units
	13" (330 mm)	50,000 units	40,000 units		20,000 units

NOTE

1. For paper tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

$\frac{\text{Product specification}}{8}$

FUNCTIONAL DESCRIPTION

POWER RATING

AF122 / AF124 / AF162 / AF164 rated power at 70 $^\circ\text{C}$ is 1/16 W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$V = \sqrt{(P \times R)}$

or max. working voltage whichever is less

Where

V=Continuous rated DC or AC (rms) working voltage (V)

P=Rated power (W)

R=Resistance value (Ω)

YAGEO

6 8

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature Exposure	AEC-Q200 Test 3 MIL-STD-202 Method 108	1,000 hours at $T_A = 155$ °C, unpowered	±(2.0%+0.05Ω) <50 mΩ for Jumper
Moisture Resistance	AEC-Q200 Test 6 MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	±(2.0%+0.05Ω) <100 mΩ for Jumper
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202 Method 103	1,000 hours; 85 °C / 85% RH 10% of operating power Measurement at 24±4 hours after test conclusion	±(3.0%+0.05Ω) <100 mΩ for Jumper
Operational Life	AEC-Q200 Test 8 MIL-STD-202 Method 108	1,000 hours at 125 °C, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	±(3.0%+0.05Ω) <100 mΩ for Jumper
Resistance to Soldering Heat	AEC-Q200 Test 15 MIL-STD-202 Method 210	Condition B, no pre-heat of samples Lead-free solder, 260±5 °C, 10±1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	±(1.0%+0.05Ω) <50 mΩ for Jumper No visible damage
Thermal Shock	AEC-Q200 Test 16 MIL-STD-202 Method 107	-55/+125 °C Number of cycles is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	±(1.0%+0.05Ω) <50 mΩ for Jumper
ESD	AEC-Q200 Test 17 AEC-Q200-002	Human Body Model, _{pos.} + 1 _{neg.} discharges 22/124: 500V 62/164: KV	±(3.0%+0.05 Ω) <50 mΩ for Jumper

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability	AEC-Q200 Test 18	Electrical Test not required Magnification 50X	Well tinned (≥95% covered)
- Wetting	J-STD-002	SMD conditions:	No visible damage
		(a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds.	
		(b) Method B, steam aging 8 hours, dipping at 215±3 ℃ for 5±0.5 seconds.	
		(c) Method D, steam aging 8 hours, dipping at 260±3 ℃ for 30±0.5 seconds.	
Board Flex	AEC-Q200 Test 21	Chips mounted on a 90mm glass epoxy resin	±(1.0%+0.05Ω)
	AEC-Q200-005	PCB (FR4)	$<50 \text{ m}\Omega$ for lumper
		3mm	7
		Holding time: minimum 60 seconds	
Temperature Coefficient of	MIL-STD-202 Method 304	At +25/–55 °C and +25/+125 °C	Refer to table 2
Resistance (T.C.R.)		Formula:	
		T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$	
		Where	
		t_1 =+25 °C or specified room temperature	
		t_2 =–55 °C or +125 °C test temperature	
		R_1 =resistance at reference temperature in ohms	
		R_2 =resistance at test temperature in ohms	
Short Time	IEC60115-14.13	2.5 times of rated voltage or maximum	±(2.0%+0.05Ω)
Overload		overload voltage whichever is less for 5 sec at room temperature	$<50~m\Omega$ for Jumper
FOS	ASTM-B-809-95*	Sulfur 750 hours, 105°C, unpowered	±(4.0%+0.05Ω)
	*Modified		<100m Ω for Jumper

7

Product specification

YAGEO

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 6	Apr. 21, 2021	-	- Upgrade to Automotive Grade and voltage of AF124 updated, TCR of AF164 updated.
Version 5	Mar. 20, 2017	-	- Modify AFI24/I64 Equivalent Circuit Diagram
Version 4	Jun. 23, 2016	-	- AEC-Q200 qualified
Version 3	Nov. 17, 2015	-	- Add in AF162
Version 2	May 29,2015	-	- Add in AF164
Version I	Aug. 15, 2014	-	- Update AF124 dimensions
Version 0	Oct. 02, 2013	-	- First issue of this specification

"Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resistor Networks & Arrays category:

Click to view products by Yageo manufacturer:

Other Similar products are found below :

CSC06A0122K0GEJ M8340105K1002FGD03 M8340105M4700JGD03 M8340106M2002GCD03 M8340107K1471FGD03 M8340107K2002GCD03 M8340107K2261FGD03 M8340107M1501GGD03 M8340108K1001FCD03 M8340108K1003FCD03 M8340108K3240FGD03 M8340108K3242FGD03 M8340108K3322FCD03 M8340108K3743FGD03 M8340108K4991FGD03 M8340109K4700GGD03 M8340109M4701GCD03 M8340109MA010GHD03 EXB-24N121JX EXB-24N330JX EXB-24N470JX 744C083101JTR EXB-U14360JX EXB-U18240JX 744C083270JTR 745C102472JP 745X101103JP 767161104G MDP1603100KGE04 770101223 MNR04M0APJ471 MNR14E0APJ100 MNR18E0APJ102 MNR18E0APJ680 ACAS06S0830339P100 ACAS06S0830343P100 ACAS06S0830344P100 RAVF164DJT68K0 RM2012A-102/104-PBVW10 RM2012A-102503-PBVW10 RM2012A-502104-PBVW10 NRSN04I4J220TRF NRSN06I4J330TRF NRSNA4I4J330TRF 8B472TR4 ACAS06S0830341P100 ACAS06S0830342P100 ACAS06S0830345P100 EXB-18N390JX EXB-U14220JX