

DATA SHEET

SURFACE MOUNT MULTILAYER CERAMIC CAPACITORS

General purpose class II

X6S

4 V TO 50 V 100 pF to 47μF

RoHS compliant & Halogen free

YAGEO Phi(comp

X6S

SCOPE

This specification describes X6S series chip capacitors with lead-free terminations.

APPLICATIONS

PCs, Hard disk, Game PCs Power supplies DVD players Mobile phones Data processing

FEATURES

Supplied in tape on reel Nickel-barrier end termination RoHS compliant Halogen free compliant

ORDERING INFORMATION-GLOBAL PART NUMBER,

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code GLOBAL PART NUMBER (PREFERRED)

CC <u>xxxx</u> <u>x</u> <u>x</u> X6S <u>x</u> BB <u>xxx</u> (1) (2) (3) (4) (5)

(I) SIZE – INCH BASED (METRIC)

0201 (0603)

Surface Mount Multilayer Ceramic Capacitors

0402 (1005)

0603 (1608)

0805 (2012)

1206 (3216)

1210 (3225)

(2) TOLERANCE

 $K = \pm 10\%$

 $M = \pm 20\%$

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

C = Bulk case

(4) RATED VOLTAGE

 $4 = 4 \ \lor$

5 = 6.3 V

6 = 10 V

7 = 16 V

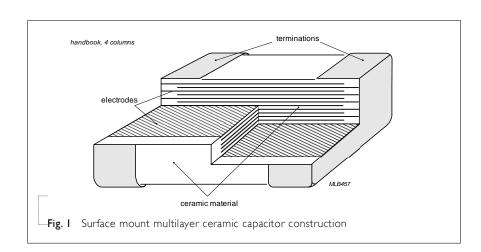
8 = 25 V

9 = 50 V

(5) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

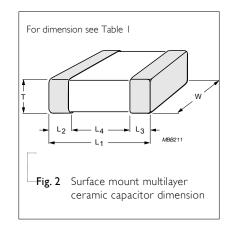

Example: $103 = 10 \times 10^3 = 10,000 \text{ pF} = 10 \text{ nF}$

3

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). Thterminations are lead-free. A cross section of the structure is shown in Fig. I.



DIMENSION

Table I For outlines see fig. 2

TVDF	L _I (mm) W (mm) T (MM)		L ₂ / L ₃	(mm)	L ₄ (mm)	
TYPE	L ₁ (IIIIII)	vv (mm)	1 (141141)	min.	max.	min.
0201	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.10	0.20	0.20
0201	0.6±0.09	0.3 ±0.09	0.3±0.09	0.10	0.20	0.20
	1.0 ± 0.05	0.5 ±0.05	0.5 ±0.05			
0402	1.0 ±0.15	0.5 ±0.15	0.5 ±0.15	0.15	0.30	0.40
	1.0 ±0.20	0.5 ±0.20	0.5 ±0.20			
	1.6±0.10	0.8 ±0.10	0.8 ±0.10			
0603	1.6 ±0.15	0.8 ±0.15	0.8 ±0.15	0.20	0.60	0.40
	1.6 ±0.20	0.8 ±0.20	0.8 ±0.20			
0805	2.0±0.20	1.25 ±0.20	1.25 ±0.20	0.25	0.75	0.55
1206	3.2 ±0.30	1.6 ±0.20	1.6 ±0.20	0.25	0.75	1.40
1210	3.2 ± 0.40	2.5 ±0.30	2.5 ±0.20	0.25	0.75	1.40
1210	3.2 ± 0.40	2.5 ±0.30	2.5 ±0.30	0.25	0.75	1.40

OUTLINES

CAPACITANCE RANGE & THICKNESS FOR X6S

Table 2 Sizes from 0201 to 0402

CAP.	CAP. 0201				0402			0603						
	6.3V	I0V	16V	25V	6.3 V	10 V	16 V	25 V	4 V	6.3 V	10 V	16 V	25 V	50 V

100 nF 0.3±0.03 0.3±0.03		
220 nF	0.5±0.05 0.5±0.05 0.5±0.05	
470 nF	0.5±0.05 0.5±0.05	
l uF	0.5±0.05	0.8±0.1 0.8±0.1 0.8±0.1 0.8±0.1 0.8±0.1
2.2 uF	0.5±0.20 0.5±0.20	0.8±0.1 0.8±0.1 0.8±0.1 0.8±0.2
4.7 uF	0.5±0.15	0.8±0.2 0.8±0.2
10 uF		0.8±0.2 0.8±0.2
22 uF		0.8±0.2 0.8±0.2
47 uF		

Table 3 Sizes from 0805 to 1210

CAP.	0805					1206				1210		
	6.3 V	10 V	16 V	25 V	50 V	6.3 V	10 V	16 V	25 V	6.3 V	10 V	16V
100 nF												
220 nF												
470 nF												
I uF												
2.2 uF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2							
4.7 uF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2								
10 uF	1.25±0.2	1.25±0.2	1.25±0.2			1.6±0.2	1.6±0.2	1.6±0.2	1.6±0.2			
22 uF	1.25±0.2					1.6±0.2	1.6±0.2	1.6±0.2				
47 uF										2.5±0.2	2.5±0.2	
100 uF												

5

THICKNESS CLASSES AND PACKING QUANTITY

 Га	h	le	4
ıa	•		

SIZE	THICKNESS	TAPE WIDTH -	Ø180 MN	1 / 7 INCH	Ø330 MN	1 / 13 INCH	QUANTITY
CODE	CLASSIFICATION	QUANTITY PER REEL	Paper	Blister	Paper	Blister	PER BULK CASE
0201	0.3 ±0.03 mm	8 mm	15,000		50,000		
0402	0.5 ±0.05 mm	8 mm	10,000		50,000		50,000
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000
0805	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000
1206	1.6 ±0.2 mm	8 mm		2,000		8,000	
1210	2.5±0.2/0.3 mm	8 mm		500			

ELECTRICAL CHARACTERISTICS

X6S DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise specified, all tests and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

Temperature: 15 °C to 35 °C
Relative humidity: 25% to 75%
Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

Table 5

DESCRIPTION	VALUE
Capacitance range	100 nF to 100 μF
Capacitance tolerance	±10% and ±20%
Dissipation factor (D.F.)	≤10%
Insulation resistance after I minute at U _r (DC)	Rins × Cr ≥ 100 / 50 Ω.F *
Maximum capacitance change as a function of temperature (temperature characteristic/coefficient):	±22%
Operating temperature range:	_55 °C to +105 °C
Note:	

Note:

Rins \times Cr \geq 100 Ω ,F

0201: 100nF to 470nF 0201: 1uF

0402: 470nF, |uF/ 6.3V to |OV 0402: 220nF, |uF/ | 16V to 25V, 2.2uF, 4.7uF to |OuF/ 6.3V

 0603: 1uF, 2.2uF/ 6.3V to 16V, 4.7uF/ 6.3V to 16V
 0603: 2.2uF/ 25V, 4.7uF/ 25V, 10uF to 22uF

 0805: 2.2uF, 4.7uF to 10uF/ 6.3V to 16V
 0805: 4.7uF/ 50V, 10uF/ 25V, 22uF to 47uF

 1206: 10uF/ 6.3V to 16V, 22uF/ 6.3V to 10V
 1206: 10uF/ 25V, 22uF/ 16V, 47uF to 100uF

1210: 47uF to 100uF

6 10

SOLDERING RECOMMENDATION

Table 6

SOLDERING METHOD	SIZE ≤ 0402	0603	0805	1206	≥ 1210
Reflow	Reflow only	≥ 1.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave		< 1.0 µF	< 2.2 µF	< 4.7 µF	

TESTS AND REQUIREMENTS

Table 7 Test procedures and requirements

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS	
Mounting	IEC 60384- 4.3 21/22		The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage	
Visual Inspection and Dimension Check		4.4	Any applicable method using × 10 magnification	In accordance with specification	
Capacitance (1)		4.5.1	Class 2: At 20 °C, 24 hrs after annealing Cap \leq I μ F, f = I KHz, measuring at voltage I Vrms at 20 °C Cap $>$ I μ F, f = I KHz for C \leq I0 μ F, rated voltage $>$ 6.3 V, measuring at voltage I Vrms at 20 °C f = I KHz, for C \leq I0 μ F, rated voltage \leq 6.3 V, measuring at voltage 0.5 to I Vrms at 20 °C	Within specified tolerance	
Dissipation Factor (D.F.) ⁽¹⁾		4.5.2	f = 120 Hz for C > 10 μF, measuring at voltage 0.5 Vrms at 20 °C Class 2: At 20 °C, 24 hrs after annealing Cap \leq 1 μF, f = 1 KHz, measuring at voltage 1 Vrms at 20 °C Cap > 1 μF, f = 1 KHz for C \leq 10 μF, rated voltage > 6.3 V, measuring at voltage 1 Vrms at 20 °C f = 1 KHz, for C \leq 10 μF, rated voltage \leq 6.3 V, measuring at voltage 0.5 Vrms at 20 °C f = 120 Hz for C > 10 μF, measuring at voltage 0.5 Vrms at 20 °C	In accordance with specification	
Insulation Resistance		4.5.3	At U_r (DC) for I minute	In accordance with specification	

NOTE

1. The figure indicates typical inspection. Please refer to individual specifications.

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Temperature Characteristic	4.	Capacitance shall be measured by the steps shown in the following table.	Class I : Δ C/C: ±30ppm
		The capacitance change should be measured after 5 min at each specified temperature stage.	Class2: X6S: ∆ C/C: ±22%
		Step Temperature(°C)	
		a 25±2	
		b Lower temperature±3°C	
		c 25±2	
		d Upper Temperature±2°C	
		e 25±2	
		(I) Class I	
		Temperature Coefficient shall be calculated from the formula as below	
		Temp, Coefficient = $\frac{C2 - C1}{C1 \times \Delta T} \times 10^6$ [ppm/°C]	
		C1: Capacitance at step c	
		C2: Capacitance at 125°C	
		ΔT: 100°C(=125°C-25°C)	
		(2) Class II	
		Capacitance Change shall be calculated from the formula as below	
		$\Delta C = \frac{C2 - C1}{C1} \times 100\%$	
		C1: Capacitance at step c	
		C2: Capacitance at step b or d	
Adhesion	4.7	A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate	Force size ≥ 0603: 5N size = 0402: 2.5N size = 0201: 1N
Bending Strength	IEC 60384- 4.8 21/22	Mounting in accordance with IEC 60384-22 paragraph 4.3	No visible damage
		Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm	ΔC/C Class2: X6S: ±10%

1	8

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Resistance to Soldering Heat		4.9	Precondition: I50 +0/–I0 °C for I hour, then keep for 24 ±I hours at room temperature Preheating: for size ≤ I206: I20 °C to I50 °C for I	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned
			minute Preheating: for size > 1206: 100 °C to 120 °C for 1 minute and 170 °C to 200 °C for 1 minute	ΔC/C Class2: X6S: ±10%
			Solder bath temperature: 260 \pm 5 °C Dipping time: 10 \pm 0.5 seconds Recovery time: 24 \pm 2 hours	D.F. within initial specified value R _{ins} within initial specified value
Solderability		4.10	Preheated the temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds. 1. Temperature: 235±5°C / Dipping time: 2 ±0.5 s 2. Temperature: 245±5°C / Dipping time: 3 ±0.5 s (lead free) Depth of immersion: 10mm	The solder should cover over 95% of the critical area of each termination
Rapid Change of Temperature	IEC 60384- 21/22	4.11	Preconditioning; 150 +0/-10 °C for I hour, then keep for 24 ±1 hours at a room temperature 5 cycles with following detail: 30 minutes at lower category temperature 30 minutes at upper category temperature	No visual damage $\Delta C/C$ Class2: $\times 6S: \pm 15\%$
			Recovery time 24 ±2 hours	D.F. meet initial specified value R _{ins} meet initial specified value

TEST	TEST METH	OD	PROCEDURE	REQUIREMENTS
Damp Heat with U _r Load		4.13	 Preconditioning, class 2 only: 150 +0/-10 °C /I hour, then keep for 24 ±I hour at room temp Initial measure: Spec: refer to initial spec C, D, IR Damp heat test: 500 ±I2 hours at 40 ±2 °C; 90 to 95% R.H. I.0 U_r applied Recovery: Class 2: 24 ±2 hours Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirements shall be met. 	No visual damage after recovery $\Delta C/C$ Class2: $\pm 20\%$ D.F. Class2: $2 \times \text{initial value max}$ R_{ins} Class2: Rins \times Cr \geq 5s whichever is less
Endurance	IEC 60384- 21/22	4.14	 Preconditioning, class 2 only: 150 +0/-10 °C /I hour, then keep for 24 ±I hour at room temp Initial measure: Spec: refer to initial spec C, D, IR Endurance test:: Temperature: X6S: 105 °C Specified stress voltage applied for I,000 hours: Applied I.5 x Ur. Applied I Ur. 0402: 4.7uF, 10uF 0603: 10uF, 22uF 0805: 10uF/ 25V, 22uF/ 16V Recovery time: 24 ±2 hours Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirements shall be met. 	No visual damage ΔC/C Class 2: ±20% D.F. Class 2: 2 × initial value max R _{ins} Class 2: Rins × Cr ≥ 10s
Voltage Proof	IEC 60384-I	4.6	Specified stress voltage applied for 1~5 seconds Ur ≤ 100 V: series applied 2.5 Ur Charge/Discharge current is less than 50 mA	No breakdown or flashover

Surface Mount Multilayer Ceramic Capacitors General Purpose

X6S

4 V to 50 V

Product specification 10 10

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 5	Jun. 2, 2020	-	- Product range updated
Version 4	Aug 7, 2017	-	- 0402 Dimension update
Version 3	Jul 19, 2017	-	- Product range updated
Version 2	Feb. 20, 2017	-	- Dimension & capacitance update
Version I	Sep. 16, 2015	-	- Dimension & capacitance update
Version 0	Nov. 18, 2014	-	- New datasheet for general purpose High Cap X6S

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Yageo manufacturer:

Other Similar products are found below:

D55342E07B523DR-T/R NCA1206X7R103K50TRPF NCA1206X7R104K16TRPF NIN-FB391JTRF NIN-FC2R7JTRF

NMC0402NPO220J50TRPF NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF

NMC0402X7R153K16TRPF NMC0603NPO330G50TRPF NMC0603NPO331F50TRPF NMC0603X5R475M6.3TRPF

NMC0805NPO220J100TRPF NMC0805NPO270J50TRPF NMC0805NPO681F50TRPF NMC0805NPO820J50TRPF

NMC0805X7R224K25TRPF NMC1206X7R102K50TRPF NMC1210Y5V105Z50TRPLPF NMC-H0805X7R472K250TRPF NMC-L0402NPO7R0C50TRPF NMC-L0603NPO2R2B50TRPF NMC-Q0402NPO8R2D200TRPF C1206C101J1GAC C1608C0G2A221J

C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT KHC201E225M76N0T00 1812J2K00332KXT CCR06CG153FSV

CDR14BP471CJUR CDR31BX103AKWR CDR33BX683AKUS CGA2B2C0G1H010C CGA2B2C0G1H040C CGA2B2C0G1H050C

CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H120J CGA2B2C0G1H151J CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C

CGA2B2C0G1H390J CGA2B2C0G1H391J CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D CGA2B2C0G1H820J