

DATA SHEET

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS

Mid-voltage NPO/X7R 100 V TO 630 V 0.47 pF to 2.2 µF

RoHS compliant & Halogen Free

YAGEO

18

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

<u>SCOPE</u>

This specification describes Midvoltage NP0/X7R series chip capacitors with lead-free terminations.

APPLICATIONS

PCs, Hard disk, Game PCs Power supplies, Charger LCD panel ADSL, Modem

<u>FEATURES</u>

Supplied in tape on reel Nickel-barrier end termination RoHS compliant Halogen Free compliant

ORDERING INFORMATION - GLOBAL PART NUMBER, PHYCOMP

CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

CC <u>xxxx</u> <u>x</u> <u>x</u> <u>xxx</u> <u>x</u> B <u>x</u> <u>xxx</u> (1) (2) (3) (4) (5) (6) (7)

(I) SIZE - INCH BASED (METRIC)

0201 (0603) / 0402 (1005) / 0603 (1608) / 0805 (2012) / 1206 (3216) / 1210 (3225) 1808 (4520) / 1812 (4532)

(2) TOLERANCE

 $C = \pm 0.25 \text{ pF}$ $D = \pm 0.5 \text{ pF}$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$

(3) PACKING STYLE

- R = Paper/PE taping reel; Reel 7 inch
- K = Blister taping reel; Reel 7 inch
- P = Paper/PE taping reel; Reel 13 inch
- F = Blister taping reel; Reel 13 inch

(4) TC MATERIAL

NPO X7R

(5) RATED VOLTAGE

- 0 = 100 V
- A = 200 V
- Y = 250 V
- B = 500 V
- Z = 630 V

(6) PROCESS

N = NP0

B = Class 2 MLCC

(7) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $|2| = |2 \times |0| = |20 \text{ pF}$

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig. I.

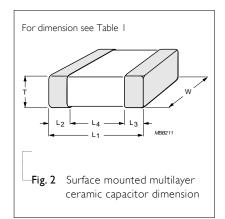

DIMENSION

 Table I
 For outlines see fig. 2

terminations
electrodes
MLB457
ceramic material Fig. I Surface mounted multilayer ceramic capacitor construction

TYPE	TYPE L _I (mm) W (mm)		L ₂ / L ₃ (L ₄ (mm)		
TTPE		vv (mm)	T (MM)	min.	max.	min.
0201	0.6 ±0.03	0.3±0.03	0.3±0.03	0.10	0.20	0.20
0402	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15	0.30	0.40
0603	1.6 ±0.10	0.8 ±0.10	0.8 ±0.10	0.20	0.60	0.40
	2.0 ±0.10	1.25 ±0.10	0.6 ±0.10			
0805	2.0 ±0.10	1.25 ±0.10	0.85 ±0.10	0.25	0.75	0.70
	2.0 ±0.20	1.25 ±0.20	1.25 ±0.20			
	3.2 ±0.15		0.6 ±0.10			
		1.6 ±0.15	0.85 ±0.10			
1206	3.2 ±0.30		1.25 ±0.20	0.25	0.75	1.40
		1.6 ±0.20	1.6 ±0.20			
	3.2 ±0.30	1.6 ±0.30	1.6 ±0.30			
	3.2 ±0.20	2.5 ±0.20	0.85 ±0.10			
1210	5.2 ±0.20	2.3 ±0.20	1.25 ±0.20	0.25	0.75	1.40
1210	3.2 ±0.30	2.5 ±0.20	1.6 ±0.20	0.25	0.75	1.10
	5,2 ±0,50	2,5 10,20	2.0 ±0.20			
1808	4.5 ±0.40	2.0 ±0.30	1.25 ±0.20	0.25	0.75	2.20
1812	4.5 ±0.40	3.2 ±0.30	0.85 ±0.10	0.25	0.75	2.20

OUTLINES

CAPACITA			<u>CKNESS FO</u>	<u>or Npo</u>						
Table 2 S			0/07			0005				
CAP.	0201 100V	0402 100∨	0603 100 V	200 V	250 V	0805 100 ∨	200 V	250 V	500 V	630V
0.22 pF										
0.47 pF										
0.56 pF										
0.68 pF										
0.82 pF										
I.0 pF										
I.2 pF										
1.5 pF										
1.8 pF										
2.2 pF										
2.7 pF										
3.3 pF										
3.9 pF										
4.7 pF										
5.6 pF	021002		0.01.01	00101	00101	0(101	0(101	0(101	0(101	0(101
6.8 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
8.2 pF										
10 pF										
I2 pF										
15 pF										
18 pF										
22 pF										
27 pF										
33 pF										
39 pF										
47 pF										
56 pF										
68 pF										
82 pF										
100 pF										

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage

ΝΟΤΕ

YAGEO

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-12 series is on request

4

18

Product specification

NP0/X7R 100 V to 630 V

YAGEO

Product specification

5

18

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 3 Sizes from 0603 to 0805 (continued)

CAP.	0402 100 ∨	0603 100 V	200 V	250 V	0805 100 ∨	200 V	250 V	500 V	630 V
100 5	100 ¥	100 ¥	200 V	230 V	100 ¥	200 ¥	250 V	500 ¥	050 1
120 pF						0 () 0 1		0 () 0	
150 pF						0.6± 0.1	0.6± 0.1	0.6± 0.1	0.6± 0.1
180 pF									
220 pF 270 pF									
			0.8± 0.1	0.8± 0.1					
330 pF	0.5 ± 0.05				0.6± 0.1			0.85±0.1	0.85±0.1
390 pF									
470 pF						0.85±0.1	0.85±0.1		
560 pF									
680 pF		-						1.25±0.2	1.25±0.2
820 pF									
I.0 nF		0.8± 0.1							
I.2 nF									
I.5 nF					0.85±0.1				
I.8 nF									
2.2 nF						1.25±0.2	1.25±0.2		
2.7 nF									
3.3 nF				_					
3.9 nF									
4.7 nF				_	1.25±0.2				
5.6 nF									
6.8 nF				_					
8.2 nF									
10 nF									
l2 nF									
15 nF									
18 nF									
22 nF									

ΝΟΤΕ

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-12 series is on request

YAGEC									Product sp	becification 6
	Surfac	e-Mount (Ceramic N	Aultilayer	Capacito	S Mid-v	oltage NI	P0/X7R 100	V to 630 V	18
<u>CAPACIT</u>	ANCE RA	NGE & T!	-IICKNESS	FOR NDO						
		206 to 2		1012 1110						
CAP.	1206					1210				
	100 V	200 V	250 V	500 V	630 V	100 V	200 V	250 V	500 V	630 V
0.47 pF										
0.56 pF										
0.68 pF										
0.82 pF										
I.0 pF										
I.2 pF										
I.5 pF										
I.8 pF										
2.2 pF										
2.7 pF										
3.3 pF										
3.9 pF 4.7 pF										
5.6 pF										
6.8 pF	0.6±0.1	0.6±0.1	0.6±0.1							
8.2 pF										
I0 pF										
I2 pF										
I5 pF										
I8 pF										
22 pF										
27 pF										
33 pF				0.6±0.1	1.25±0.2					
39 pF										
47 pF										
56 pF						1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2
68 pF						1.25±0.2	1.23±0.2	1.23±0.2	1.23±0.2	
82 pF										

ΝΟΤΕ

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-12 series is on request

1	Y/	G	EO

Product specification 7 18

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

CAPACITANCE RANGE & THICKNESS FOR NPO

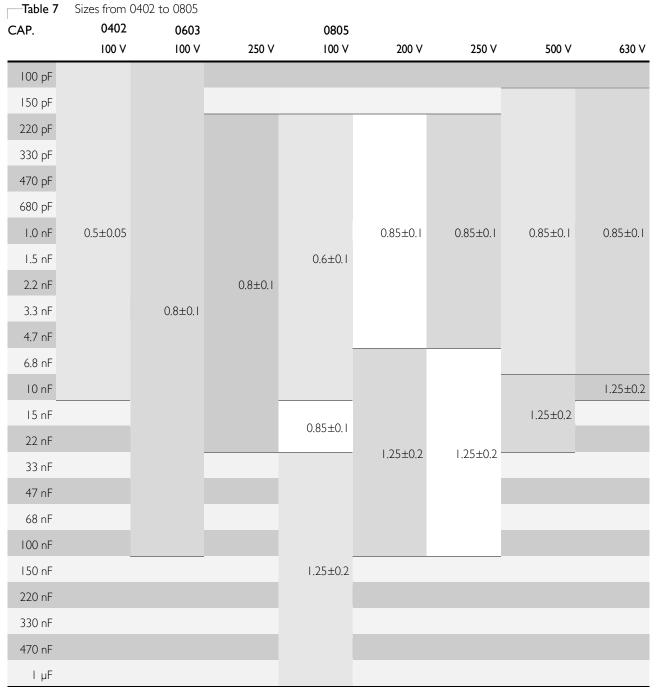
Table 5	Sizes from	1206 to	1210	(continued)
Table 5	51205 11 0111	1200 10	1210	(continued)

100 V 200 V 250 V 500 V 630 V 100 V 200 V 250 V 500 V 100 pF 120 pF 120 pF 125	630 V
120 pF 130 pF 140 pF	
150 рF 180 рF 180 pF 0.6±0.1 0.6±0.1 220 pF 0.6±0.1 0.6±0.1 370 pF 0.6±0.1 0.6±0.1 100 pF 1.25±0.2 680 pF 1.25±0.2 10.0 nF 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 1.2 nF 1.25±0.2 1.2 nF 1.25±0.2	
180 pF 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 1.25±0.2	
220 pF 0.6±0.1	
270 pF 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 0.6±0.1 330 pF	
330 pF	
390 pF 470 pF 1.25±0.2 1.2	
470 pF 0.6±0.1 I.25±0.2 I.	1.25±0.2
0.6±0.1 0.6±0.1 I.25±0.2 I	
560 pF Image: second secon	
820 pF 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 1.2 nF 0.85±0.1 0.85±0.1 1.25±0.2 1.5 nF 1.25±0.2 1.25±0.2 1.8 nF 1.25±0.2 1.25±0.2 2.2 nF 1.25±0.2 1.25±0.2	
I.0 nF 0.85±0.1 0.85±0.1 0.85±0.1 0.85±0.1 I.2 nF 0.85±0.1 0.85±0.1 I.25±0.2 I.8 nF 1.25±0.2 1.25±0.2 2.2 nF 1.25±0.2	
1.2 nF 1.5 nF 1.8 nF 2.2 nF 0.85±0.1 0.85±0.1 1.25±0.2 1.25±0.2	
I.5 nF I.8 nF 2.2 nF	
1.8 nF 2.2 nF	
2.2 nF	
3.3 nF	
3.9 nF 4.7 nF 0.85±0.1	
5.6 nF	
6.8 nF	
8.2 nF	
1.25±0.2	
12 nF	
15 nF	
18 nF	
1.6±0.2	

ΝΟΤΕ

- I. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

YAGE	Surface	-Mount Ceramic	Multilayer Capac	itors Mid-voltag	e NP0/X7R 100 V to 6	30 V
	TANCE RAN	GE & THICKNESS	FOR NPO			
Table 6	Sizes 1812					
CAP.		1812				(20)
		100 V	200 V	250 V	500 V	630V
	IO pF					
	12 pF					
	15 pF 18 pF					
	22 pF					
	27 pF					
	33 pF					
	39 pF					
	47 pF					
	56 pF					
	68 pF					
	82 pF					
	100 pF					
	120 pF					
	150 pF					
	180 pF					
	220 pF					
	270 pF					1.25±0.2
	330 pF					1120 2012
	390 pF					
	470 pF				1.25±0.2	
	560 pF					
	680 pF					
	820 pF I nF					
	I.2 nF			1.25±0.2		
	1.2 m 1.5 nF		1.25±0.2	1.23±0.2		
	1.8 nF					
	2.2 nF					
	2.7 nF	1.25±0.2				
	3.3 nF					
	3.9 nF					
	4.7 nF					
	5.6 nF					
	6.8 nF					
	8.2 nF					
	10 nF					
	I2 nF					
	15 nF					
	18 nF					
	22 nF					


ΝΟΤΕ

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-12 series is on request

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

CAPACITANCE RANGE & THICKNESS FOR X7R

ΝΟΤΕ

I. Values in shaded cells indicate thickness class in mm

- 2. Capacitance value of non E-6 series is on request
- 3. For special ordering code, please contact local sales force before order
- 4. For product with 5% tolerance, please contact local sales force before order

9

18

Product specification

YAGEC						1			Product speci	
CADACIT		e-Mount (NGE & Th		lultilayer (Capacitor	S Mid-volt	age NP0/2	K7R 100 V I	to 630 V	18
Table 8		n 1206 to 12		<u>rok vik</u>						
CAP.	1206					1210				
	100 V	200 V	250 V	500 V	630 V	100 V	200 V	250 V	500 V	630V
100 pF										
150 pF										
220 pF										
330 pF										
470 pF										
680 pF										
I.0 nF										
I.5 nF		0.85±0.1	0.85±0.1		1.25±0.2 ⁻					
2.2 nF				1.25±0.2						
3.3 nF	0.85±0.1									
4.7 nF							0.85±0.1	0.85±0.1		
6.8 nF										1.25±0.2
10 nF									1.25±0.2	
15 nF	-	_		-		0.85±0.1				
22 nF			-		1.6±0.2					1.6±0.2
33 nF		1.25±0.2	I.25±0.2 ⁻	1.6±0.2						2.0±0.2
47 nF							1 25 1 0 2			
68 nF	1	1.6±0.2	14102				1.25±0.2	1.25±0.2	1.6±0.2	
100 nF 150 nF	I.25±0.2 -	1.6±0.2	1.6±0.2						2.0±0.2	
220 nF										
330 nF						I.25±0.2 -				
470 nF										
680 nF	1.6±0.2									
ΙμF						2.0±0.2				
2.2 μF	I.6±0.3					2.0±0.2				

ΝΟΤΕ

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-6 series is on request

3. For product with 5% tolerance, please contact local sales force before order

18

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

Table 9	Sizes from 1808 to 1812	
CAP.	1812	

CAP.

CAP.	1812 100 V	200 V	250 V	500 V	630 V
100 pF					
150 pF					
220 pF					
330 pF					
470 pF					
680 pF					
I.0 nF					
I.5 nF					
2.2 nF					
3.3 nF					
4.7 nF		0.85±0.1	0.85±0.1		I.35±0.2
6.8 nF	0.85±0.1	0.65±0.1	0.05±0.1	1.25±0.2	
10 nF	0.03±0.1			1.25±0.2	
I5 nF					
22 nF					
33 nF					I.6±0.2
47 nF					
68 nF		1.25±0.2	1.25±0.2		
100 nF		1.25±0.2	1.25±0.2	1.6±0.2	
150 nF					
220 nF	1.25±0.2				
330 nF		1.6±0.2	1.6±0.2		
470 nF					
680 nF	1.6±0.2				
ΙμF					

ΝΟΤΕ

- I. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request
- 3. For product with 5% tolerance, please contact local sales force before order

THICKNESS CLASSES AND PACKING QUANTITY

Table 10	0						
SIZE	THICKNESS	TAPE WIDTH	Ø180 MM	/ 7 INCH	Ø330 MM /	13 INCH	QUANTITY
CODE	CLASSIFICATION	QUANTITY PER REEL	Paper	Blister	Paper	Blister	PER BULK CASE
0201	0.3 ±0.03 mm	8 mm	15,000		50,000		
0402	0.5 ±0.05 mm	8 mm	10,000		50,000		50,000
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000
_	0.6 ±0.1 mm	8 mm	4,000		20,000		10,000
0805	0.8 / 0.85 ±0.1 mm	8 mm	4,000		15,000		8,000
	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000
_	0.6 ±0.1 mm	8 mm	4,000		20,000		
_	0.8 / 0.85 ±0.1 mm	8 mm	4,000		15,000		
1206 -	1.00 / 1.15 ±0.1 mm	8 mm		3,000		10,000	
-	1.25 ±0.2 mm	8 mm		3,000		10,000	
_	1.6 ±0.15 mm	8 mm		2,500		10,000	
	1.6 ±0.2 mm	8 mm		2,000		8,000	
_	0.6 / 0.7 ±0.1 mm	8 mm		4,000		15,000	
_	0.85 ±0.1 mm	8 mm		4,000		10,000	
_	1.15 ±0.1 mm	8 mm		3,000		10,000	
	1.15 ±0.15 mm	8 mm		3,000		10,000	
	1.25 ±0.2 mm	8 mm		3,000			
1210	1.5 ±0.1 mm	8 mm		2,000			
_	1.6 / 1.9 ±0.2 mm	8 mm		2,000			
	2.0 ±0.2 mm	8 mm		2,000 1,000			
	2.5 ±0.2 mm	8 mm		1,000 500			
_	1.15 ±0.15 mm	l2 mm		3,000			
_	1.25 ±0.2 mm	l2 mm		3,000			
1808 -	1.35 ±0.15 mm	l2 mm		2,000			
-	1.5 ±0.1 mm	l2 mm		2,000			
_	1.6 ±0.2 mm	l2 mm		2,000		8,000	
	2.0 ±0.2 mm	l2 mm		2,000			
_	0.6 / 0.85 ±0.1 mm	l2 mm		2,000			
	1.15 ±0.1 mm	l2 mm		000, ا			
	1.15 ±0.15 mm	l2 mm		000, ا			
	1.25 ±0.2 mm	l2 mm		000, ا			
1812	1.35 ±0.15 mm	l2 mm		000, ا			
	1.5 ±0.1 mm	l2 mm		000, ا			
	1.6 ±0.2 mm	l2 mm		000, ا			
_				1 0 0 0			
	2.0 ±0.2 mm	l2 mm		1,000			

ELECTRICAL CHARACTERISTICS

NP0/X7R DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 $^\circ\text{C}$ to 35 $^\circ\text{C}$
- Relative humidity: 25% to 75%
- Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

Table	211		
DESCRIP	PTION		VALUE
Capacitar	nce range	0.47 p	F to 2.2 µF
Capacitar	nce tolerance		
NP0	C < 10 _P F	±0.25	pF, ±0.5 pF
	C ≥ 10 _P F	±2%, =	±5%, ±10%
X7R		±5% ⁽¹⁾ , ±	10%, ±20%
Dissipatio	on factor (D.F.)		
NP0	C < 30 _P F	≤ / (4	00 + 20C)
	C ≥ 30 _P F		≤ 0.1 %
X7R			≤ 2.5 %
Exception	n	X7R/0603/100V, 12nF ≤ C ≤ 100nF, X7R/1206/2.2µF/100V	≤ 5%
		X7R/1206/100V/560nF to 1μF; X7R/1210/100V/1μF and 2.2μF;	≤ 3.5%
Insulation	n resistance after 1 minute at U _r (DC)	$R_{ins} \ge 10 \text{ G}\Omega \text{ or } R_{ins} \times C \ge 500 \text{ seconds which}$	never is less
	n capacitance change as a function of tempe ature characteristic/coefficient):	rature	
NP0		±	30 ppm/°C
X7R			±15%
•	g temperature range:		
NP0/X7	7R	–55 ℃ t	:o +125 °C

NOTE

I. Capacitance tolerance ±5% doesn't available for X7R full product range, please contact local sales force before order

SOLDERING RECOMMENDATION

Table 12

SOLDERING METHOD	SIZE 0201	0402	0603	0805	1206	≥ 1210
Reflow	Reflow only	> 100 nF	> 1.0 µF	> 2.2 µF	> 2.2 µF	Reflow only
Reflow/Wave		≤ 100 nF	≤ 1.0 µF	≤ 2.2 µF	≤ 2.2 µF	

TESTS AND REQUIREMENTS

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage
Visual Inspection and Dimension Check		4.4	Any applicable method using × 10 magnification	In accordance with specification
Capacitance		4.5.1	Class I: $f = MHz \text{ for } C \le nF$, measuring at voltage $ V_{rms} \text{ at } 20^{\circ}C$ $f = KHz \text{ for } C > nF$, measuring at voltage $ V_{rms} \text{ at } 20^{\circ}C$ Class 2: $f = KHz \text{ for } C \le 0 \ \mu\text{F}$, measuring at voltage $ V_{rms} \text{ at } 20^{\circ}C$	Within specified tolerance
Dissipation Factor (D.F.)		4.5.2	Class I: $f = MHz \text{ for } C \le nF$, measuring at voltage V_{rms} at 20°C $f = KHz \text{ for } C > nF$, measuring at voltage V_{rms} at 20°C Class 2: $f = KHz \text{ for } C \le 0 \mu F$, measuring at voltage V_{rms} at 20°C	In accordance with specification (in Table 11)
Insulation Resistance		4.5.3	$U_r \le 500$ V: At Ur for 1 minute $U_r > 500$ V: At 500 V for 1 minute	In accordance with specification (in Table 11)

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Temperature coefficient		4.6	Capacitance shall be measured by the steps shown in the following table. The capacitance change should be measured after 5 min at each specified temperature stage. $\boxed{Step Temperature(^{\circ}C)}$ a 25±2 b Lower temperature±3°C c 25±2 d Upper Temperature±2°C e 25±2 (1) Class I Temperature Coefficient shall be calculated from the formula as below Temp, Coefficient = $\frac{C2 - CI}{CI \times \Delta T} \times 10^{6}$ [ppm/°C] C1: Capacitance at step c C2: Capacitance at step c C2: Capacitance at 125°C ΔT : 100°C (=125°C -25°C) (2) Class II Capacitance Change shall be calculated from the formula as below $\Delta C = \frac{C2 - CI}{CI} \times 100\%$ C1: Capacitance at step c C2: Capacitance at step c	<general purpose="" series=""> Class1: Δ C/C: ±30ppm Class2: X7R: Δ C/C: ±15% <high capacitance="" series=""> Class2: X7R/X5R: Δ C/C: ±15%</high></general>
Adhesion	IEC 60384- 21/22	4.7	A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate	Force size ≥ 0603: 5N size = 0402: 2-5N size = 0201: 1N
Bending Strength		4.8	Mounting in accordance with IEC 60384-22 paragraph 4.3	No visible damage
			Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm	Δ C/C Class 1: NP0: within ±1% or 0.5 pF, whichever is greater Class2: X7R: ±10%

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Resistance to Soldering		4.9 Precondition: $150 \pm 0/-10$ °C for 1 hour, then keep for 24 ±1 hours at room		Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned
Heat			temperature Preheating: for size ≤ 1206: 120 °C to 150 °C for 1 minute Preheating: for size >1206: 100 °C to 120 °C for 1 minute and 170 °C to 200 °C for 1	Δ C/C Class I: NP0: within ±0.5% or 0.5 pF, whichever is greater Class2: X7R: ±10%
			minute — Solder bath temperature: 260 ±5 °C Dipping time: 10 ±0.5 seconds Recovery time: 24 ±2 hours	D.F. within initial specified value R _{ins} within initial specified value
Solderability		4.10	Preheated the temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.	The solder should cover over 95% of the critical area of each termination
			 Temperature: 235±5°C / Dipping time: 2 ±0.5 s Temperature: 245±5°C / Dipping time: 3 ±0.5 s (lead free) Depth of immersion: 10mm 	
Rapid Change of	IEC 60384- 21/22	4.	Preconditioning; 50 +0/–10 °C for 1 hour, then keep for _	No visual damage
Temperature			 24 ±1 hours at room temperature 5 cycles with following detail: 30 minutes at lower category temperature 30 minutes at upper category temperature 	Δ C/C Class 1: NP0: within ±1% or 1 pF, whichever is greater Class2: X7R: ±15%
			Recovery time 24 ±2 hours -	D.F. meet initial specified value R _{ins} meet initial specified value

TEST	TEST METH	HOD	PROCEDU	RE		REQUIREMENTS
Damp Heat		4.13 3. Preconditioning, class 2 only:				No visual damage after recovery
			 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp 4. Initial measure: Spec: refer initial spec C, D, IR 5. Damp heat test: 500 ±12 hours at 40 ±2 °C; 90 to 95% R.H. 			ΔC/C Class 1: NP0: within ±2% or 1 pF, whichever is greater Class2: X7R: ±15% D.F.
			6. Recovery: Class 1: 6 Class 2: 2:			Class 1: NP0: $\leq 2 \times$ specified value Class2: X7R: $\geq 25 \lor : \leq 5\%$
			P.S. If the c minimum v measureme shall be pre	apacitance va value permitte ents have bee econdition acc	lue is less than the id, then after the other in made the capacitor cording to <i>"IEC 60384</i> ement shall be met.	R_{ins} Class I: NP0: ≥ 2,500 MΩ or $R_{ins} × C_r ≥ 25s$ whichever is less Class2: ×7R: ≥ 500 MΩ or $R_{ins} × C_r ≥ 25s$ whichever is less
Endurance	IEC 60384- 21/22		 Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp Initial measure: Spec: refer initial spec C, D, IR Endurance test: Temperature: NP0/X7R: 125 °C Specified stress voltage applied for 1,000 hours: High voltage series follows with below stress condition: 			No visual damage ΔC/C Class I: NP0: within ±2% or 1 pF, whichever is greater Class2: X7R: ±15% D.F. Class I:
			Voltage	NPO	X7R	NP0: $\leq 2 \times \text{specified value}$
			≤ 100V 200/250V 500/630V ≥ 1KV	2.0 × Ur 1.5 × Ur 1.3 × Ur 1.2 × Ur	2.0 x Ur 1.5 x Ur 1.2 x Ur 1.1 x Ur	Class2: $X7R: \ge 25 \forall : \le 5\%$ R_{ins} Class1:
 * NPO, 0603, 100V, 5.1nF to 10nF, appl.5 × Ur 5. Recovery time: 24 ±2 hours 6. Final measure: C, D, IR P.S. If the capacitance value is less th minimum value permitted, then after measurements have been made the shall be precondition according to "I 4.1" and then the requirement shall 		F to 10nF, apply voltag hours alue is less than the red, then after the othe en made the capacitor ccording to ''IEC 60384	Class2: X7R: \geq 1,000 M Ω or R _{ins} \times C _r \geq 50s whichever is less			
Voltage Proof 4.6		Specified stress voltage applied for $1 \sim 5$ seconds $Ur \le 100$ V: series applied 2.5 Ur 100 V < $Ur \le 200$ V series applied (1.5 Ur + 100) 200 V < $Ur \le 500$ V series applied (1.3 Ur + 100) Ur > 500 V: 1.3 Ur $Ur \ge 1000$ V: 1.2 Ur Charge/Discharge current is less than 50 mA			No breakdown or flashover	

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

<u>revision</u>	<u>HISTORY</u>		
REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 22	Sep. 10, 2020	-	- Add
			NPO : 0603/100V/1.8nF to 10nF, 1206/250V/3.3nF to 3.9nF
			I206/630V/2.2nF X7R :0805/I00V330nF to ΙμF, 0805/250V/68nF to I00nF
			1206/100V/680nF, 1210/500V/68nF to 100nF, 1210/630V/47nF
			- Modify
			NPO :1210/100V/12nF to 15nF thickness to 1.25mm
			X7R :1210/630V/22nF thickness to 1.6mm 1210/630V/27nF to 33nF thickness to 2.0mm
Version 21	Jul. 13, 2018	_	- Add
VEISIONZI	jui. 13, 2010	-	NPO : 0402/120pF to InF/100V, 0603/1.2nF to 1.5nF/100V,
			1206/1.8nF/630V, 1210/12nF to 22nF/100V
			X7R : 0805/33nF to 47nF/200 to 250V
Version 20	Sep. 14, 2017	-	- Dimension outlines updated
Version 19	Mar 7, 2017	-	- 0805 L4 spec updated
Version 18	Dec 9, 2016	-	- Soldering recommendation update
Version 17	Aug 16, 2016	-	- Capacitance range & thickness update
Version 16	Apr. 16, 2015	-	- Capacitance range & thickness
Version 15	Apr. 16, 2015	-	- Electrical characteristics update
Version 14	Sep. 25, 2014	-	- Electrical characteristics update
Version 13	Apr. 21, 2014	-	- Electrical characteristics update
Version 12	Dec. 12, 2013	-	- Electrical characteristics update
Version 11	Jun. 17, 2013	-	- Test method and procedure updated
Version 10	Nov 22, 2012	-	- Test method and procedure updated
Version 9	Feb 02, 2012	-	- Test method and procedure updated
Version 8	Apr 22, 2011	-	- NP0 0402 100V added
Version 7	Mar 01, 2011	-	- Dimension updated
Version 6	Sep 30, 2010	-	- Update the thickness of 0805 100V
Version 5	Sep 28, 2010	-	- Product range updated
			- Thickness classes and packing quantity table updated
Version 4	Jun 17, 2010	-	- Update the dimension of 0805, 1206 and 1812
Version 3	Mar 25, 2010	-	- Product range update
Version 2	Mar 15, 2010	-	- Product range update
Version I	Oct 30, 2009	-	 Change to dual brand datasheet that describe Mid-voltage NP0/X7R series with RoHS compliant
			- Replace the "100V to 630V" part of pdf files: UP-NP0X7R_MV_100-to- 500V_0, UY-NP0X7R_MV_100-to-500V_0, NP0_16V-to-100V_6, NP0_50-to-500V_10, X7R_16-to-500V_9 and X7R_16V-to-100V_9
			- Define global part number - Description of "Halogen Free compliant" added - Test method and procedure updated
Version 0	Sep 08, 2005		- New
	Jep 00, 2003	-	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Yageo manufacturer:

Other Similar products are found below :

D55342E07B523DR-T/R NCA1206X7R103K50TRPF NCA1206X7R104K16TRPF NIN-FB391JTRF NIN-FC2R7JTRF NMC0402NPO220J50TRPF NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF NMC0402X7R153K16TRPF NMC0603NPO330G50TRPF NMC0603NPO331F50TRPF NMC0603X5R475M6.3TRPF NMC0805NPO220J100TRPF NMC0805NPO270J50TRPF NMC0603NPO681F50TRPF NMC0805NPO820J50TRPF NMC0805X7R224K25TRPF NMC1206X7R102K50TRPF NMC1210Y5V105Z50TRPLPF NMC-H0805X7R472K250TRPF NMC-L0402NPO7R0C50TRPF NMC12063NPO2R2B50TRPF NMC-Q0402NPO8R2D200TRPF C1206C101J1GAC C1608C0G2A221J C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT KHC201E225M76N0T00 1812J2K00332KXT CCR06CG153FSV CDR14BP471CJUR CDR31BX103AKWR CDR33BX683AKUS CGA2B2C0G1H010C CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H120J CGA2B2C0G1H151J CGA2B2C0G1H07C CGA2B2C0G1H050C CGA2B2C0G1H390J CGA2B2C0G1H391J CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D CGA2B2C0G1H820J