

DATA SHEET

METAL FILM RESISTORS

General Purpose MFR Series ±0.5%, ±1%, ±2%, ±5% 1/6w to 3w

RoHS compliant & Halogen Free

YAGEO

Product specification – September 27, 2023 V.3

00

111

TE

YAGEO | Through Hole Resistors

Metal Film Resistors

APPLICATIONS

- All general purpose applications
- Power applications

ORDERING INFORMATION

Part number of the general purpose metal film resistor are identified by the series, power rating, tolerance, packing, temperature coefficient, forming and resistance value.

PART NUMBER

MFR

(1)	(2)	<u>F</u> (3)	<u>T</u> (4)	<u>F</u> (5)	(6)	(7)	
(1) SEF	RIES						
MF	R Series						
(2) PO\	NER RA						
-12	= 1/6W			-50	= 1/2W		200 = 2W
25S	25S = 1/4W				= 1W		3WS = 3W
-25	-25 = 1/4W			2W\$	S = 2W		1WS = 1W
50S = 1/2W							
(3) TOI	ERANC	E					
$D = \pm 0.5\%$			F =	±1%		G = ±2%	
$J = \pm 5\%$							
(4) PA(CKAGIN	G					
(5) TEN		ick FURE (COEF	FICIEN		SISTANC	
(5) TEN		ick FURE (COEF	FICIEN		SISTANC	
(5) TEN E=±	IPERA 50ppm/	ick FURE (COEF	FICIEN	IT OF RE	SISTANC	CE
(5) TEN E=± (6) FOI	IPERA 50ppm/	nck FURE (°C	COEF	FICIEN	IT OF RE	•C	CE
(5) TEN E=± (6) FOF 26-	IPERA 50ppm/	rure (°C	COEF	FICIEN	IT OF RE	•C	CE - = Based on spec
(5) TEN E=± (6) FOP 26- 52-	IPERA 50ppm/ RMING = 26mm	rure (°C	COEF	FICIEN	IT OF RE	SISTANC °C FFK = F- FKK = FI	CE - = Based on spec
(5) TEN E=± (6) FOI 26- 52- 73- M =	IPERA 50ppm/ RMING = 26mm = 52.4m = 73mm M-Type	nck FURE 0 ℃	ing	FICIEN	IT OF RE	SISTANC °C FFK = F- FKK = FH MT = MT	CE - = Based on spec form Kink KK Type
(5) TEN E=± (6) FOF 26- 52- 73- M = MB	IPERA 50ppm/ RMING = 26mm = 52.4m = 73mm M-Type = M-forr	nck FURE 0 ℃	ing	FICIEN	IT OF RE	SISTANC °C FFK = F- FKK = FH MT = MT	SE - = Based on spec form Kink KK Type Type Forming Type Forming
(5) TEN E=± (6) FOP 26- 52- 73- M = MB F =	IPERA 50ppm/ RMING = 26mm = 52.4m = 73mm M-Type = M-forr F Type	°C °C	ing	FICIEN	IT OF RE	SISTANC °C FFK = F- FKK = FF MT = MT FT = FT PN = PA AV = AV	C = Based on spec form Kink KK Type Type Forming Type Forming NAsert Isert
(5) TEN E=± (6) FOF 26- 52- 73- M = MB F = FK	IPERA 50ppm/ RMING = 26mm = 52.4m = 73mm M-Type = M-forr F Type = FK Typ	°C °C Form To To To To To To To To To To To To To	ing	FICIEN F=±	IT OF RE	SISTANC °C FFK = F- FKK = FF MT = MT FT = FT PN = PA AV = AV	C = Based on spec form Kink KK Type Type Forming Type Forming NAsert
(5) TEN E=± (6) FOI 26- 52- 73- M = MB F = FK = 52A	IPERA 50ppm/ RMING = 26mm = 52.4m = 73mm M-Type = M-forr F Type = FK Typ =52.4m	rURE °C °C m w Formi m W/fla pe m, ψd	ing a 0.4±0.	FICIEN F=±	IT OF RE	SISTANC °C FFK = F- FKK = FF MT = MT FT = FT PN = PA AV = AV	C = Based on spec form Kink KK Type Type Forming Type Forming NAsert Isert
(5) TEM E=± (6) FOF 26- 52- 73- M = MB F = FK = 52A 52B	IPERA 50ppm/ RMING = 26mm = 52.4m = 73mm M-Type = M-forr F Type = FK Typ =52.4m =52.4m	rURE 0 °C °C m m W/fla coe m, ψd m, ψd	ing a 0.4±0. 0.45±(FICIEN F=± 02mm).02mr	n	SISTANC °C FFK = F- FKK = FF MT = MT FT = FT PN = PA AV = AV	C = Based on spec form Kink KK Type Type Forming Type Forming NAsert Isert
(5) TEN E=± (6) FOI 26- 52- 73- M = MB F = FK = 52A 52B 52C	IPERA 50ppm/ 50ppm/ RMING = 26mm = 52.4m = 73mm M-Type = M-forr F Type = FK Typ = 52.4m = 52.4m	rURE (°C °C μ m the Formi m W/fla coe m, ψd m, ψd	ing a 0.4±0. 0.45±0 0.5±0.	FICIEN F=± 02mm 0.02mr 02mm	n	SISTANC °C FFK = F- FKK = FF MT = MT FT = FT PN = PA AV = AV	C = Based on spec form Kink KK Type Type Forming Type Forming NAsert Isert
(5) TEM E=± (6) FOI 26- 52- 73- M = MB F = FK = 52A 52B 52C 52C	IPERA 50ppm/ RMING = 26mm = 52.4m = 73mm M-Type = 73mm M-Type = FK Typ = 52.4m = 52.4m = 52.4m	rURE (°C °C m m v Formi m W/fla ce m, ψd m, ψd m, ψd	ing a 0.4±0. 0.45±(0.5±0. ≥ 0.6n	FICIEN F=± 02mm 0.02mm 02mm	n	SISTANC °C FFK = F- FKK = FF MT = MT FT = FT PN = PA AV = AVI FB-= FB-	C = Based on spec form Kink KK Type Type Forming Type Forming NAsert Isert
(5) TEM E=± (6) FOI 26- 52- 73- M = MB F = FK = 52A 52B 52C 52C	IPERA 50ppm/ RMING = 26mm = 52.4m = 73mm M-Type = 73mm M-Type = FK Typ = 52.4m = 52.4m = 52.4m	rURE (°C °C m m v Formi m W/fla ce m, ψd m, ψd m, ψd	ing a 0.4±0. 0.45±(0.5±0. ≥ 0.6n	FICIEN F=± 02mm 0.02mm 02mm	n	SISTANC °C FFK = F- FKK = FF MT = MT FT = FT PN = PA AV = AVI FB-= FB-	C = Based on spec form Kink KK Type Type Forming Type Forming NAsert Isert

E24 & E96 & E192 Series Example: $100R = 100\Omega$, $10K = 10,000\Omega$, $1M = 1,000,000\Omega$

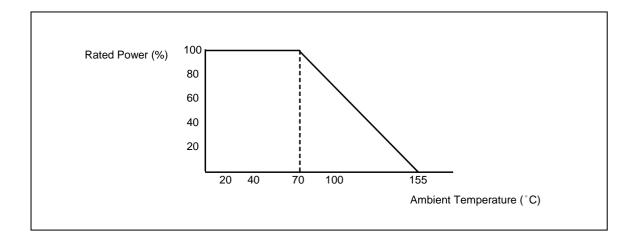
EATURES

AEC-Q200 qualified

- Wide resistance range
- PPAP ready
 (MFR-25/MFR50S/MFR-50)
- High stability
- RoHS compliant & halogen-free

17

MFR


$\frac{3}{17}$

DIMENSIONS

_

					Unit: mm
Normal	Miniature	L	ψD	н	ψd
MFR-12	MFR25S	3.4 ± 0.3	1.9 ± 0.2	28 ± 2.0	0.45 ± 0.05
MFR-25	MFR50S	6.3 ± 0.5	2.4 ± 0.2	28 ± 2.0	0.55 ± 0.05
MFR-50	MFR1WS	9.0 ± 0.5	3.3 ± 0.3	26 ± 2.0	0.55 ± 0.05
MFR100	MFR2WS	11.5 ± 1.0	4.5 ± 0.5	35 ± 2.0	0.8 ± 0.05
MFR200	MFR3WS	15.5 ± 1.0	5.0 ± 0.5	33 ± 2.0	0.8 ± 0.05

DERATING CURVE

ELECTRICAL CHARACTERISTICS

CHARACTERISTICS	MFR-12	MFR25S	MFR-25	MFR50S	MFR-50	MFR1WS	MFR100	MFR2WS MFR200	MFR3WS
Power Rating at 70 °C	1/6W	1/4W	1/4W	1/2W	1/2W	1W	1W	2W	3W
Maximum Working Voltage	200V	200V	250V	300V	350V	400V	500V	500V	500V
Maximum Overload Voltage	400V	400V	500V	600V	700V	800V	1000V	1000V	1000V
Voltage Proof on Insulation	300V	400V	500V	500V	500V	700V	1000V	1000V	1000V
Resistance Range	1Ω ~ 4M	7Ω for E24	& E96 seri	es value					
Operating Temp. Range	- 55°C to +155°C								
Temperature Coefficient	±50ppm/°C , ±100ppm/°C								

Note: For resistance value out of above range is by request.

MFR

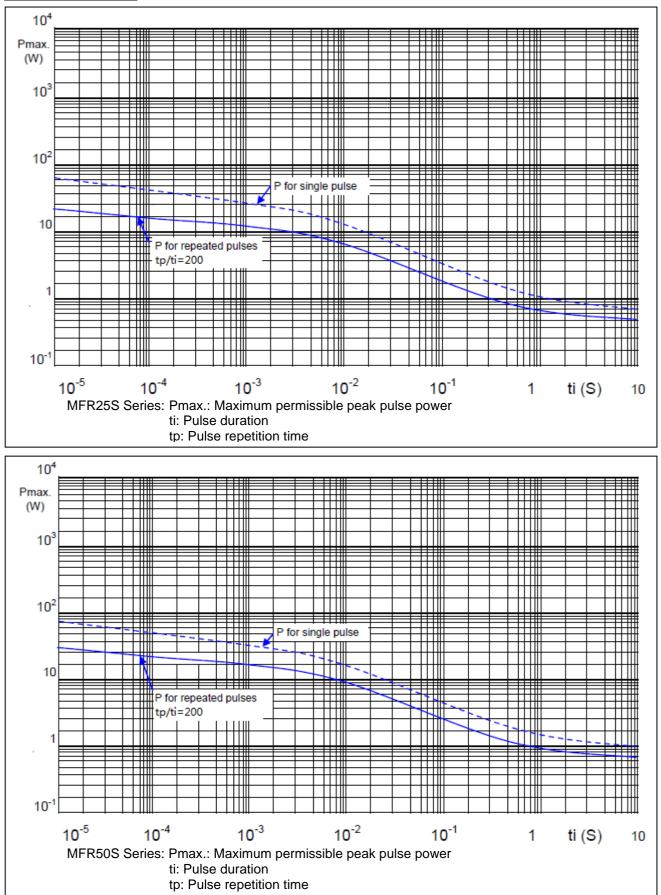
4

TEST AND REQUIRMENTS

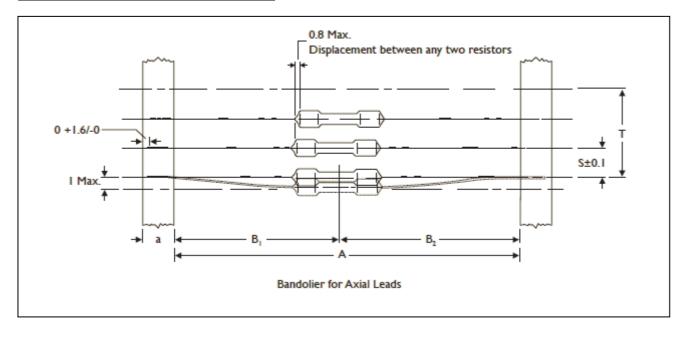
TEST	TEST METHOD	PROCEDURE	APPRAISE
Short Time Overload	IEC 60115-1 4.13	2.5 times RCWV for 5 sec.(Not more than maximum overload voltage)	±0.25%+0.05Ω
Voltage Proof on Insulation	IEC 60115-1 4.7	In V-Block for 60 sec. test voltage as above table	No Breakdown
Temperature Coefficient	IEC 60115-1 4.8	Between -55°C to +155°C	Ву Туре
Insulation Resistance	IEC 60115-1 4.6	In V-Block for 60 sec.	>10,000MΩ
Solderability	IEC 60115-1 4.17	245±5°C for 3±0.5 Sec.	95% Min. coverage
Solvent Resistance of Marking	IEC 60115-1 4.30	IPA for 5±0.5 Min. with ultrasonic	No deterioration of coatings and markings
Robustness of Terminations	IEC 60115-1 4.16	Direct load for 10 Sec. in the direction of the terminal leads	≥2.5Kg(24.5N)
Periodic-pulse Overload	IEC 60115-1 4.39	4 times RCWV 10,000 cycles (1 Sec. on, 25 Sec.off)	±1.0%+0.05Ω
Damp Heat Steady State	IEC 60115-1 4.24	40±2°C,90-95% RH for 56 days, loaded with 0.1 times RCWV	±1.5%+0.05Ω
Endurance at 70°C	IEC 60115-1 4.25	70±2°C at RCWV(or Umax., whichever less) for 1,000 Hr.(1.5 Hr.on,0.5 Hr. off)	±1.5%+0.05Ω
Temperature Cycling	IEC 60115-1 4.19	 → -55°C → Room Temp. → +155°C Room Temp.(5 cycles) 	±0.75%+0.05Ω
Resistance to Soldering Heat	IEC 60115-1 4.18	260±3°C for 10±1 Sec., immersed to a point 3±0.5mm from the body	±0.25%+0.05Ω

Note:

RCWV (Rated Continuous Working Voltage):

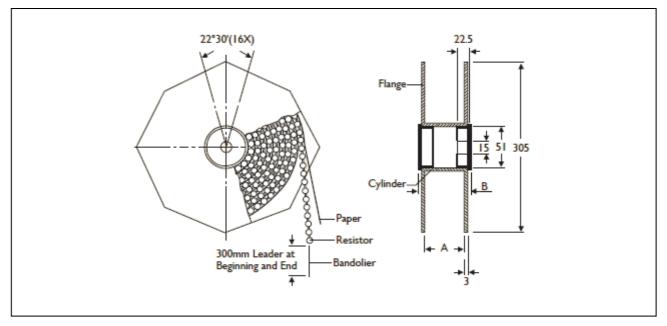

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

V=√(P X R) or max. working voltage whichever is less Where V=Continuous rated DC or AC (rms) working voltage (V) P=Rated power (W) R=Resistance value (Ω)


MFR

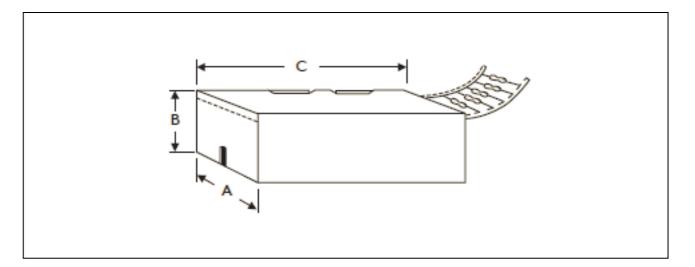
PULSE DIAGRAMS

17


MFR

l In	it.	mm
υn	Ιτ:	mm

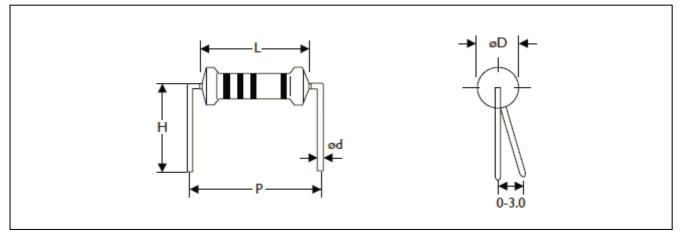
Normal	Miniature	а	Α	B1-B2 (Max.)	S (spacing)	T (max. deviation of spacing)
MFR-12	MED25S	6 ± 0.5	52.4 ± 1.5	1.2	- 5	
IVIER-12	FR-12 MFR25S	0 ± 0.5	26.0 ± 1.5	1.0	- 5	
	MEDGOO	0.05	52.4 ± 1.5	1.2	r	
MFR-25	MFR50S	S 6 ± 0.5 26.0 ± 1.5 1.0	- 5			
MFR-50	MFR1WS	6 ± 0.5	52.4 ± 1.5	1.2	5	1 mm per 10 spacing, 0.5 mm per 5 spacing
		0.05	73.0 ± 1.5	1.5	r	- 0.5 min per 5 spacing
MFR100	MFR2WS	6 ± 0.5	52.4 ± 1.5	1.2	- 5	
MED200	MFR3WS	6.05	73.0 ± 1.5	1.5	10	
MFR200	IVIER3VVS	6 ± 0.5	52.4 ± 1.5	1.2	- 10	


TAPE ON REEL PACKING

TYPE					
Normal	Miniature Across Flange(A)		В	Quantity Per Reel	
MFR-12	MFR25S	66.5	75.5	5,000	
MFR-25	MFR50S	66.5	75.5	5,000	
MFR-50	MFR1WS	66.5	75.5	2,500	
MFR100	MFR2WS	87	96	2,000	
MFR200	MFR3WS	87	96	1,000	

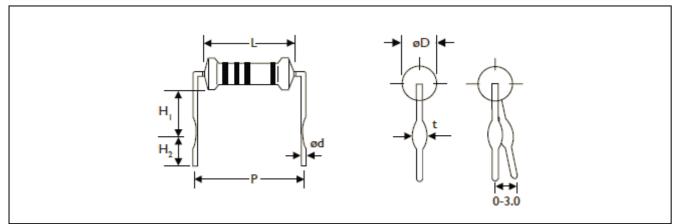
 $\frac{7}{17}$

TAPE ON BOX PACKING


TYPE		DIMENSION	S		Unit: mm/piece			
Normal	Miniature	Α	В	С	Quantity Per Box			
MFR-12	MFR25S	48	102	255	5,000			
MFR-12	MFR25S	81	70	260	5,000			
MFR-25	MFR50S	48	102	255	5,000			
MFR-25	MFR50S	81	104	260	5,000			
MFR-50	MFR1WS	73	45	258	1,000			
MFR100	MFR2WS	81	91	260	1,000			
MFR100	MFR2WS	103	78	260	1,000			
MFR200	MFR3WS	81	91	260	1,000			
MFR200	MFR3WS	103	94	260	1,000			

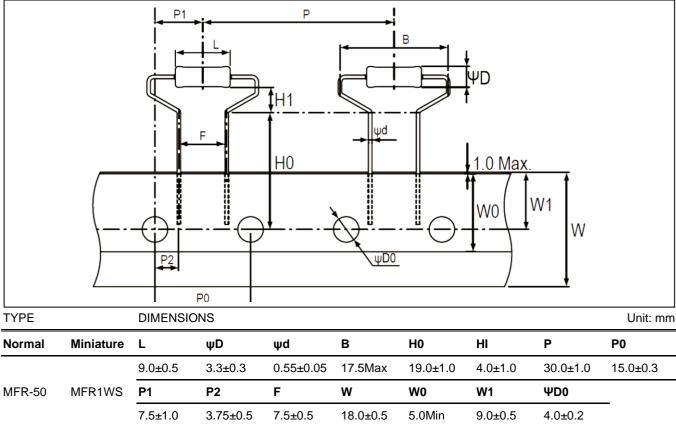
BULK PACKING

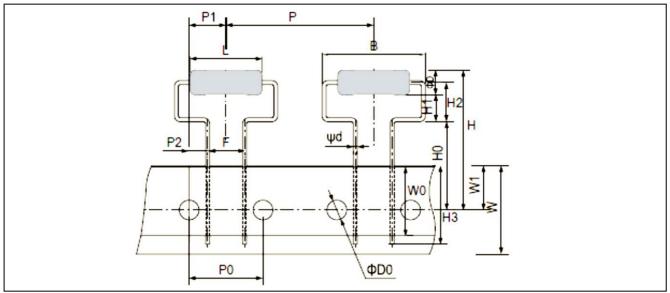
Normal	Miniatura	Diese/Der Inner Dev	Bag/Day Innas Bay	Diago Dor Dor
Normal	Miniature	Piece/Per Inner Box	Bag/Per Inner Box	Piece Per Bag
MFR-12	MFR25S	10,000	10	1,000
MFR-25	MFR50S	10,000	10	1,000
MFR-50	MFR1WS	5,000	5	1,000
MFR100	MFR2WS	2,000	4	500
MFR200	MFR3WS	1,000	2	500


FORMING

M TYPE

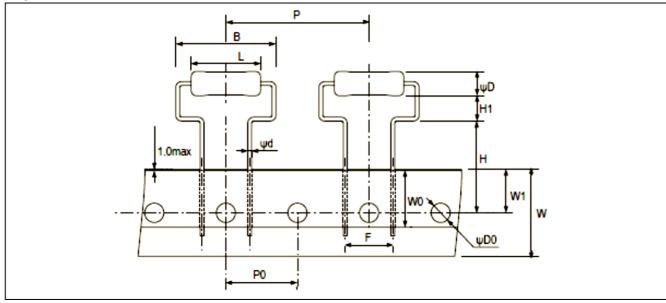
TYPE		DIMENSIONS	DIMENSIONS					
Normal	Miniature	L	ψD	ψd	Р	н		
MFR-12	MFR25S	3.4±0.3	1.9 ± 0.2	0.45 ± 0.05	6.0 ± 1	10.0 ±1		
MFR-25	MFR50S	6.3 ± 0.5	2.4 ± 0.2	0.55 ± 0.05	10.0 ± 1	10.0 ± 1		
MFR-50	MFR1WS	9.0 ± 0.5	3.3±0.3	0.55 ± 0.05	12.5 ± 1	10.0 ± 1		
MFR100	MFR2WS	11.5 ± 1.0	4.5 ± 0.5	0.8 ± 0.05	15.0 ± 1	12.5 ± 1		
MFR200	MFR3WS	15.5 ± 1.0	5.0 ± 0.5	0.8 ± 0.05	20.0 ± 1	15.0 ± 1		


MB TYPE

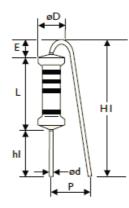

TYPE	DIMENSIONS						Unit: mm	
Normal	Miniature	L	ψD	ψd	Р	H1	H2	t
MFR-25	MFR50S	6.3 ± 0.5	2.4 ± 0.2	0.55 ± 0.05	10.0 ± 1	6.0 ± 1	5.0 ± 1	1.2 ± 0.2
MFR-50	-	9.0 ± 0.5	3.3±0.3	0.55 ± 0.05	12.5 ± 1	6.0 ± 1	5.0 ± 1	1.2 ± 0.2
-	MFR1WS	9.0 ± 0.5	3.3±0.3	0.8 ± 0.05	12.5 ± 1	6.0 ± 1	5.0 ± 1	1.4 ± 0.2
MFR100	MFR2WS	11.5 ± 1.0	4.5 ± 0.5	0.8 ± 0.05	15.0 ± 1	6.0 ± 1	5.0 ± 1	1.4 ± 0.2
MFR200	MFR3WS	15.5 ± 1.0	5.0 ± 0.5	0.8 ± 0.05	20.0 ± 1	10.0 ± 1	5.0 ± 1	1.4 ± 0.2

<u>--</u> 17

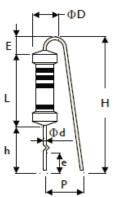
MHA TYPE


MHB TYPE

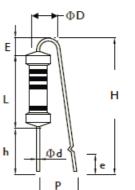
TYPE		DIMENSIONS							Unit: mm	
Normal	Miniature	L	ψD	ψd	В	н	H0	н	H2	H3
		15.5±1.0	5.0±0.5	0.8±0.05	21.0Max.	30Max.	18.0±1.0	5.5(Ref.)	8.0±1.5	16Max.
MFR200	MFR3WS	Р	P0	PI	P2	F	W	WO	W1	ΨD0
		30.0±1.0	15.0±0.3	7.5±1.0	3.75±0.8	7.5±0.5	18.0±0.5	5.0Min.	9.0±0.5	4.0±0.3

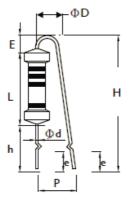

17

MHC TYPE

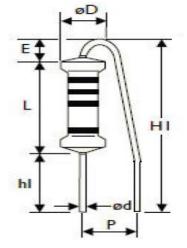


TYPE		DIMENSIC	ONS						Unit: mm
Normal	Miniature	L	ψD	ψd	В	н	н	Р	P0
		15.5±1.0	5.0±0.5	0.8±0.05	21.0Max.	19.0±1.0	5.25±1.0	30.0±1.0	15.0±0.3
MFR200	MFR3WS	F	W	W0	W1	ΨD0			
		10.0±0.5	18.0±0.5	5.0Min.	9.0±0.5	4.0±0.2			


F TYPE

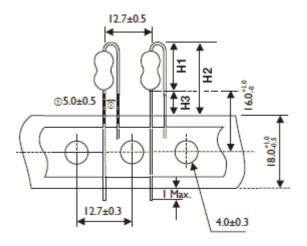


TYPE		DIMENS	ONS								Unit: mm
Normal	Miniature	L	ψD	ψd	Ρ	h	H Max.	hl	н	E Max.	е
MFR-25	MFR50S	6.3 ± 0.5	2.4 ± 0.2	0.55 ± 0.05	6±1	-	-	5.5±0.5	13.5±0.5	3.5	-
MFR-50	MFR1WS	9.0±0.5	3.3±0.3	0.55±0.05	6±1	8±1	22	5±1	18.5 Max.	3.5	3.5±1
MFR100	MFR2WS	11.5±1	4.5±0.5	0.8±0.05	6±1	8±1	24	5±1	20 Max.	3.5	3.5±1
MFR200	MFR3WS	15.5±1	5.0±0.5	0.8±0.05	8±1	8±1	28	5±1	25 Max.	3.5	3.5±1
Will EOL F forming code to -25&50S on Feb.28,2023											


28,20 ıg

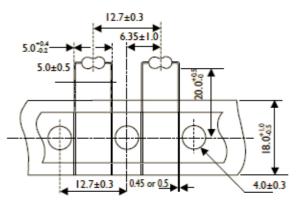
MFR

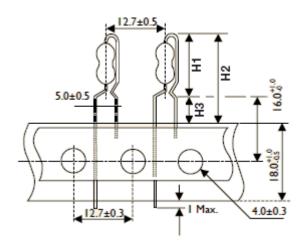
Product Specification 13


FB- TYPE (for -25&50S)

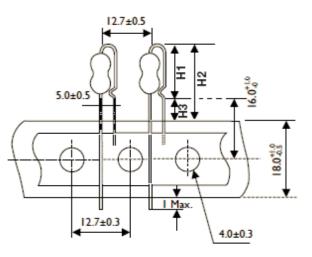
TYPE		DIMENSIO	NS					Unit: mm
Normal	Miniature	L	ψD	ψd	Ρ	hl	н	E Max.
MFR-25	MFR50S	6.3 ± 0.5	2.4 ± 0.2	0.55 ± 0.05	6±1	5.5±0.5	13.5±0.5	3.5

MFR


FT TYPE (Taping Pack)

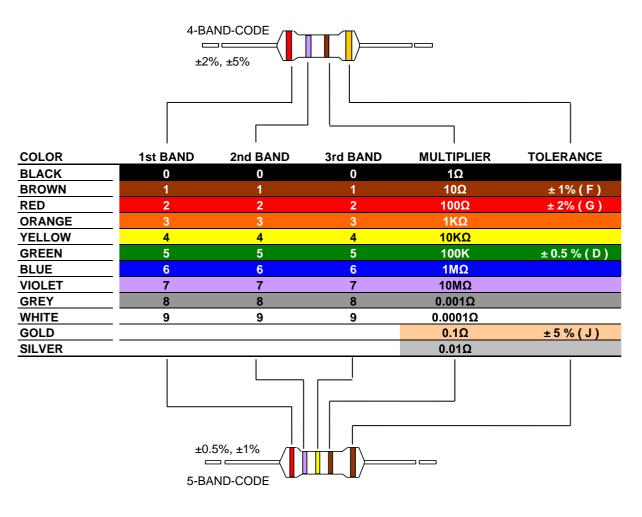

TYPE		DIME	NSIONS	Unit: mm
Normal	Miniature	H1 Max.	H2 Max.	H3 Max.
MFR-25	MFR50S	10	18.5	8.5
MFR-50	MFR1WS	13	21.5	8.5
MFR100	MFR2WS	16	24.5	8.5

MT TYPE (Taping Pack)


Rated Watts : 1/6W,1/4WS

PN TYPE (Taping Pack)

AV TYPE (Taping Pack)



TYPE		DIMEN	ISIONS	Unit: mm
Normal	Miniature	H1 Max.	H2 Max.	H3 Max.
MFR-25	MFR50S	13	21.5	8.5
MFR-50	MFR1WS	17	25.5	8.5
MFR100	MFR2WS	19	27.5	8.5

TYPE		DIMEN	ISIONS	Unit: mm
Normal	Miniature	H1 Max.	H2 Max.	H3 Max.
MFR-25	MFR50S	11.5	20	8.5
MFR-50	MFR1WS	14.5	23	8.5
MFR100	MFR2WS	17.5	26	8.5

MFR

MARKING

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 3	Sep.6, 2023	_	- Updated legal disclaimer and footer versions
Version 5	3ep.0, 2023	-	numbers
			- Add FB- forming code to -25&50S
Version 2	Aug.31, 2022	-	- Will EOL F forming code to -25&50S on
			Feb.28,2023
Version 1	Sep.28, 2021	-	- Add F TYPE for -25&50S power
Version 0	Aug.2, 2021	-	- First issue of this specification

"Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itse If are unchanged. Any product change will be announced by PCN."

MFR

17 17

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly **YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.**

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Metal Film Resistors - Through Hole category:

Click to view products by Yageo manufacturer:

Other Similar products are found below :