

DATA SHEET

CURRENT SENSOR - LOW TCR

PT series

5%, 2%, 1% sizes 0402/0603/0805/1206/0815/2010/2512

RoHS compliant & Halogen free

YAGEO Phicomp

SCOPE

This specification describes PT series current sensor - low TCR with lead-free terminations made by thick film process.

APPLICATIONS

- Converters
- Printer equipment
- Server board
- Telecom
- Consumer

<u>FEATURES</u>

- Halogen Free Epoxy
- RoHS compliant
 - Products with lead free terminations meet RoHS requirements
 - Pb-glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reduce environmentally hazardous wastes
- High component and equipment reliability
- None forbidden-materials used in products/production
- Low resistances applied to current sensing

ORDERING INFORMATION - GLOBAL PART NUMBER

Part numbers is identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

PT XXXX X X X XX XXXX L

(1) (2) (3) (4) (5) (6) (7)

(I) SIZE

0402 / 0603 / 0805 / 1206 / 0815 / 2010 / 2512

(2) TOLERANCE

 $F = \pm 1\%$

 $G = \pm 2\%$

 $J = \pm 5\%$

(3) PACKAGING TYPE

R = Paper taping reel

K = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Based on spec.

(5) TAPING REEL

07 = 7 inch dia. Reel

13 = 13 inch dia. Reel

(6) RESISTANCE VALUE

There are $3\sim5$ digits indicated the resistor value. Letter R is decimal point, no need to mention the last zero after R.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is system default code for order only (Note)

Resistance rule of global part number

Resistance code rule	Example
0RXXX (25 to 910 mΩ)	$0R025 = 25 \text{ m}\Omega$ $0R1 = 100 \text{ m}\Omega$
(23 to 710 11122)	$0R91 = 910 \mathrm{m}\Omega$

ORDERING EXAMPLE

The ordering code of a PT0603 chip resistor, value 0.56 Ω with $\pm 1\%$ tolerance, supplied in 7-inch tape reel is: PT0603FR-070R56L.

 $\frac{3}{8}$

Chip Resistor Surface Mount

PT SERIES

0402/0603/0805/1206/0815/2010/2512

MARKING

Fig. I

PT0815

E-24 series / Non-E series (R= 25/40/50 m Ω): 4 digits

The "R" is used as a decimal point; the other 3 digits are significant.

PT0805 / PT1206 / PT2010 / PT2512

Value = 220 m Ω

Value = 25 m Ω

E-24 series / Non-E series (R= 250/400/500 m Ω): 4 digits

The "R" is used as a decimal point; the other 3 digits are significant.

PT0603

Fig. 2

E-24 series / Non-E series (R= 250/400/500 m Ω): 3 digits

Fig. 3 Value = 220 m Ω

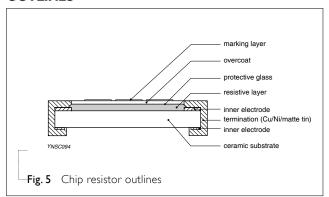
The "R" is used as a decimal point; the other 2 digits are significant.

PT0402

No marking

Fig. 4

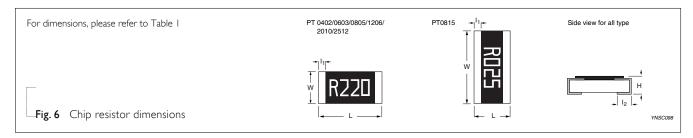
For further marking information, please refer to data sheet "Chip resistors marking".


8

PT

CONSTRUCTION

The resistors are constructed out of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive paste. The composition of the paste is adjusted to give the approximately required resistance and laser cutting of this resistive layer that achieves tolerance trims the value. The resistive layer is covered with a protective coat and printed with the resistance value. Finally, the three external terminations (Cu/Ni/matte tin) are added, as shown in Fig.5.


OUTLINES

DIMENSIONS

Table I

TYPE	L (mm)	W (mm)	H (mm)	I _I (mm)	I ₂ (mm)
PT0402	1.00 ±0.10	0.50 ±0.05	0.35 ±0.05	0.20 ±0.10	0.25 ±0.10
PT0603	1.60 ±0.10	0.80 ±0.10	0.45 ±0.10	0.25 ±0.15	0.25 ±0.15
PT0805	2.00 ±0.10	1.25 ±0.10	0.55 ±0.10	0.35 ±0.20	0.35 ±0.20
PT1206	3.10 ±0.10	1.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.45 ±0.20
PT0815	2.00 ±0.10	3.70 ±0.10	0.50 ±0.10	0.35 ±0.20	0.40 ±0.20
PT2010	5.00 ±0.10	2.50 ±0.15	0.55 ±0.10	0.60 ± 0.20	0.50 ±0.20
PT2512	6.35 ±0.10	3.20 ±0.15	0.55 ±0.10	0.60 ±0.20	0.50 ±0.20

ELECTRICAL CHARACTERISTICS

Table 2

Туре	Power	Resistance Range	Tolerance	Temperature Coefficient	of Resistance
PT0402	1/16 W				1200 (00
PT0603	1/10 W				±200 ppm/°C
PT0805	1/8 W	$100 \text{ m}\Omega \leq R < 1 \Omega$	 		±100 ppm/°C
PT1206 1/4 W	1/4\\			100 mΩ	±100 ppm/°C
		±1/0, ±2/0, ±3/0	$100 \text{ m}\Omega < R < 1 \Omega$	±75 ppm/°C	
PT0815	1/2 W	$25 \text{ m}\Omega \leq R < 50 \text{ m}\Omega$			±100 ppm/°C
PT2010	3/4 W	100 0 10 11 0	_	100 mΩ	±100 ppm/°C
PT2512	I W	$100 \text{ m}\Omega \leq R < 1 \Omega$		$100 \text{ m}\Omega < R < 1 \Omega$	±75 ppm/°C

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	PT0402	PT0603	PT0805	PT1206	PT0815	PT2010	PT2512
Paper taping reel (R)	7" (178 mm)	10,000	5,000	5,000	5,000			
	13" (330 mm)	50,000	20,000	20,000	20,000			
Embossed taping reel (K)	7" (178 mm)					4,000	4,000	4,000

NOTE

I. For paper/embossed tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

Range: -55 °C to +155 °C

POWER RATING

Each type rated power at 70 °C:

PT0402=1/16 W

PT0603=1/10 W

PT0805=1/8 W

PT1206=1/4 W

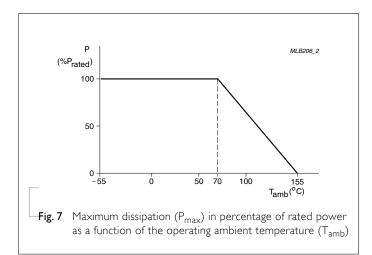
PT0815=1/2 W

PT2010=3/4 W

PT2512=1 W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(P \times R)}$$

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

<u>6</u> 8

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Temperature Coefficient of	MIL-STD-202 Method-304	At +25/+125 °C	Refer to table 2
Resistance (T.C.R.)		Formula:	
		T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$	
		Where t_1 =+25 °C or specified room temperature	
		t ₂ =+125 °C test temperature	
		R ₁ =resistance at reference temperature in ohms	
		R ₂ =resistance at test temperature in ohms	
Life/ Endurance	IEC 60115-1 4.25.1	I,000 hours at 70±5 °C applied RCWV I.5 hours on, 0.5 hour off, still air required	± (1.0%+0.0005 Ω)
High Temperature Exposure/ Endurance at Upper	IEC 60068-2-2	I,000 hours at maximum operating temperature depending on specification, unpowered	± (1.0%+0.0005 Ω)
Category Temperature		No direct impingement of forced air to the parts	
		Tolerances: 155±3 °C	
Moisture Resistance	MIL-STD-202 Method-106	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	± (0.5%+0.0005 Ω)
		Parts mounted on test-boards, without condensation on parts	
		Measurement at 24±2 hours after test conclusion	
Thermal Shock	MIL-STD-202 Method-107	-55/+125 °C	± (1.0%+0.0005 Ω)
		Note: Number of cycles required is 300. Devices unmounted	. ,
		Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	

 Chip Resistor Surface Mount
 PT
 SERIES
 0402/0603/0805/1206/0815/2010/2512

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Short Time Overload	IEC60115-1 4.13	2.5 times rated power or maximum overload voltage whichever is less for 5 sec at room temperature	\pm (1.0%+0.0005 Ω) No visible damage
Board Flex/ Bending	IEC 60068-2-21	Device mounted on PCB test board as described, only I board bending required Bending for 0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm Holding time: minimum 60±I seconds Ohmic value checked during bending	± (1.0%+0.0005 Ω) No visible damage
Solderability - Wetting	IPC/JEDECJ-STD-002B test B	Electrical Test not required Magnification 50X SMD conditions: Ist step: method B, aging 4 hours at 155 °C dry heat 2nd step: leadfree solder bath at 245±3 °C Dipping time: 3±0.5 seconds	Well tinned (≥95% covered) No visible damage
- Leaching	IPC/JEDECJ-STD-002B test D	Leadfree solder, 260 °C, 30 seconds immersion time	No visible damage
- Resistance to Soldering Heat	IEC 60068-2-58	Condition B, no pre-heat of samples. Leadfree solder, 260±5 °C, 10±1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	± (0.5%+0.0005 Ω) No visible damage

8 8

 Chip Resistor Surface Mount
 PT
 SERIES
 0402/0603/0805/1206/0815/2010/2512

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version I	Apr 06, 2011	-	- PT0805 dimension improvement for better pick and place performance
Version 0	Mar 18, 2011	-	- New datasheet for current sensor - low TCR PT series sizes of 0402/0603/0805/1206/0815/2010/2512, 1%, 2%, 5% with lead-free terminations

[&]quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Current Sense Resistors - SMD category:

Click to view products by Yageo manufacturer:

Other Similar products are found below:

CRL0603-FW-R700ELF 65709-330JE PF2512FKF7W0R007L PR2512FKF7W0R003L PR2512FKF7W0R005L PF2512FKF7W0R006L

PF2512FKF7W0R033L CD2015FC-0.10-1% PR2512FKF7W0R004L RC1005F124CS RL73K3AR56JTDF RL7520WT-R001-F

RL7520WT-R009-G RL7520WT-R020-F RLP73N1ER43JTD LRC-LR2512LF-01-R820J WR06X104JGLJ TL2BR01F 65709-330 SP1R12J

RL7520WT-R039-G PF1206FRF7W0R02L RL7520WT-R002-F RL7520WT-R047-F KRL1632E-C-R200-F-T5 KRL1632E-C-R200-F-T1

Y14880R02000B9R RLP73M1ER051FTDF RLP73M2AR051FTDF RLP73M2AR075FTDF RLP73K2A1R0FTDF RLP73M1JR051FTDF

RLP73N1JR47FTDF SR731ERTTP5R10F SR731ERTTP100J SR731ERTTP6R80F SR731ERTTP4R70F SR731ERTTP2R20F

SR731ERTTP3R90F SR731ERTTP1R00F SR731ERTTP10R0F SR731ERTTP2R00F SR731ERTTP3R9J SR731ERTTP2R2J