DATA SHEET

 GENERAI PURPOS: GHIP RIESISTORS RC_L series$\pm 0.1 \%, \pm 0.5 \%, \pm 1 \%, \pm 5 \%$
Sizes 0075/0100/020I/0402/0603/0805/ |206/I2|0/I2|8/20|0/25|2

RoHS compliant \& Halogen free

SCOPE

This specification describes RC series chip resistors with lead free terminations made by thick film process.

APPLICATIONS

- All general purpose application

䦻ATURES

- Halogen Free Epoxy
- RoHS compliant
- Products with lead free terminations meet RoHS requirements
- Pb -glass contained in electrodes, resistors element and glass are exempted by RoHS
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production

ORDERING INPORMATION - GLOBAL PART NUMBER

Global part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

```
RC XXXX X X X XX XXXX L
```

(1) (2) (3) (4) (5) (6) (7)
(I) SIZE

0075/0|00/020|/0402/0603/0805/|206/I2|0/I2|8/20|0/25|2
(2) TOLERANCE
$B= \pm 0.1 \%$
$\mathrm{D}= \pm 0.5 \%$
$F= \pm 1.0 \%$
$\mathrm{J}= \pm 5.0 \%$ (for jumper ordering, use code of J)
(3) PACKAGING TYPE
$R=$ Paper taping reel
$K=$ Embossed taping reel
S = ESD safe reel (0075/0 I00 only)
(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Based on spec.
(5) TAPING REEL
$07=7$ inch dia. Reel
$10=10$ inch dia. Reel
$13=13$ inch dia. Reel
$7 \mathrm{~W}=7$ inch dia. Reel $\& 2 \times$ standard power
$7 \mathrm{~N}=7$ inch dia. Reel, ESD safe reel (0075/0I00 only)
$3 \mathrm{~W}=13$ inch dia. Reel $\& 2 \times$ standard power
(6) RESISTANCE VALUE

There are 2~4 digits indicated the resistance value.
Letter R/K/M is decimal point
Example:
$97 R 6=97.6 \Omega$
$9 K 76=9760 \Omega$
$1 M=1,000,000 \Omega$
(7) DEFAULT CODE

Letter L is the system default code for ordering only.(Note)

ORDERING EXAMPLE

The ordering code for a RC0402 0.0625 W chip resistor value $100 \mathrm{~K} \Omega$ with $\pm 5 \%$ tolerance, supplied in 7 -inch tape reel of 10,000 units per reel is: RC0402JR-07I00KL.

NOTE

I. All our RSMD products meet RoHS compliant and Halogen Free. "LFP" of the internal 2D reel label mentions "Lead Free Process".
2. On customized label, "LFP" or specific symbol can be printed.

MARKING

RC0075 / RC0100 / RC020I / RC0402

Fig. $2 \quad 240=24 \times 10^{0}=24$
明
I\%, 0.5\%, E96 refer to EIA-96 marking method, including values IO/II/I3/I5/20/75 of E24 series
Fig. 3 88A $=806 \times 10^{0}=806 \Omega$
$1 \square$ 5\%, E24 series : 3 digits
First two digits for significant figure and 3rd digit for number of zeros
Fig. 4 Value $=10 \mathrm{~K} \Omega$
RC0805 / RCI206 / RCI2I0 / RC2010 / RC25I2

$1 \square \square 2$

1\%, 0.5\%, E24/E96 series : 4 digits
First three digits for significant figure and 4 th digit for number of zeros
Fig. 5 Value $=10 \mathrm{~K} \Omega$

5\%, E24 series : 3 digits
First two digits for significant figure and 3rd digit for number of zeros

RCl218

Fig. 7	E-24 series: 3 digits, $\pm 5 \%$ Value $=10 \mathrm{~K} \Omega$

Fig. 8 Value $=10 \mathrm{~K} \Omega$
Both E-24 and E-96 series: 4 digits, $\pm \mathrm{I} \%$ \& $\pm 0.5 \%$
First three digits for significant figure and 4 th digit for number of zeros

For further marking information, please see special data sheet "Chip resistors marking".

CONSTRUSTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environmental influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (matte tin on Ni-barrier) are added, as shown in Fig. 9

Outlines

Fig. 9 Chip resistor outlines

DIMENSION

Table I

TYPE	$\mathrm{L}(\mathrm{mm})$	$\mathrm{W}(\mathrm{mm})$	$\mathrm{H}(\mathrm{mm})$	$\mathrm{I}_{1}(\mathrm{~mm})$	$\mathrm{I}_{2}(\mathrm{~mm})$
RC0075	0.30 ± 0.01	0.15 ± 0.01	0.10 ± 0.01	0.08 ± 0.03	0.08 ± 0.03
RC0I00	0.40 ± 0.02	0.20 ± 0.02	0.13 ± 0.02	0.10 ± 0.03	0.10 ± 0.03
RC020I	0.60 ± 0.03	0.30 ± 0.03	0.23 ± 0.03	0.10 ± 0.05	0.15 ± 0.05
RC0402	1.00 ± 0.05	0.50 ± 0.05	0.35 ± 0.05	0.20 ± 0.10	0.25 ± 0.10
RC0603	1.60 ± 0.10	0.80 ± 0.10	0.45 ± 0.10	0.25 ± 0.15	0.25 ± 0.15
RC0805	2.00 ± 0.10	1.25 ± 0.10	0.50 ± 0.10	0.35 ± 0.20	0.35 ± 0.20
RCI206	3.10 ± 0.10	1.60 ± 0.10	0.55 ± 0.10	0.45 ± 0.20	0.40 ± 0.20
RCI2IO	3.10 ± 0.10	2.60 ± 0.15	0.55 ± 0.10	0.45 ± 0.15	0.50 ± 0.20
RCI2I8	3.10 ± 0.10	4.60 ± 0.10	0.55 ± 0.10	0.45 ± 0.20	0.40 ± 0.20
RC20I0	5.00 ± 0.10	2.50 ± 0.15	0.55 ± 0.10	0.45 ± 0.15	0.50 ± 0.20
RC25I2	6.35 ± 0.10	3.10 ± 0.15	0.55 ± 0.10	0.60 ± 0.20	0.50 ± 0.20

ELECTRICAL CHARACTERISTUCS

Table 2

CHARACTERISTICS	POWER	OPERATING TEMPERATURE RANGE	MAXIMUM WORKING VOLTAGE	MAXIMUM OVERLOAD VOLTAGE	DIELECTRIC WITHSTANDING VOLTAGE	RESISTANCE RANGE	TEMPERATURE COEFFICIENT	JUMPER CRITERIA
RC0075	I/50 W	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	10V	25 V	25 V	$\begin{array}{r} 5 \%(E 24) \\ 10 \Omega \leqq R \leqq I M \Omega \\ 1 \%(E 24 / E 96) \\ 10 \Omega \leqq R \leqq I M \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 10 \Omega \leqq R<100 \Omega \\ -200 \sim+600 \mathrm{ppm}^{\circ} \mathrm{C} \\ 100 \Omega \leqq \mathrm{R} \leqq 1 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm}^{\circ} \mathrm{C} \end{array}$	Rated Current 0.5A Maximum Current I.0A
RCOIOO	I/32 W	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	15V	30 V	30 V	$\begin{array}{r} 5 \%(\mathrm{E} 24) \\ \mathrm{I} \Omega \leqq \mathrm{R} \leqq 22 \mathrm{M} \Omega \\ \mathrm{I} \%(\mathrm{E} 24 / \mathrm{E} 96) \\ \mathrm{I} \Omega \leqq \mathrm{R} \leqq 10 \mathrm{M} \Omega \\ 0.5 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 33 \Omega \leqq \mathrm{R} \leqq 470 \mathrm{~K} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$1 \Omega \leqq R<10 \Omega$ $\begin{aligned} &-200 \sim+600 \mathrm{ppm} \\ & \\ & 10 \Omega \mathrm{C} \\ & \leq \mathrm{R}<100 \Omega: \\ & \pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 100 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega: \\ & \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 10 \mathrm{M} \Omega<\mathrm{R} \leq 22 \mathrm{M} \Omega: \\ & \pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	Rated Current 0.5A Maximum Current I.0A

Table 2

CHARACTERISTICS	POWER	OPERATING TEMPERATURE RANGE	MAXIMUM WORKING VOLTAGE	MAXIMUM OVERLOAD VOLTAGE	DIELECTRIC WITHSTANDING VOLTAGE	RESISTANCE RANGE	TEMPERATURE COEFFICIENT	JUMPER CRITERIA
RC0201	I/20 W	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	25 V	50 V	50 V	$\begin{array}{r} 5 \%(E 24) \\ 1 \Omega \leqq R \leqq 10 M \Omega \\ 1 \%(E 24 / \mathrm{E} 96) \\ 1 \Omega \leqq R \leqq 10 \mathrm{M} \Omega \\ 0.1 \%, 0.5 \%(E 24 / \mathrm{E} 96) \\ 10 \Omega \leqq R \leqq 1 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leqq R \leqq 10 \Omega \\ -100 \sim+350 \mathrm{ppm}^{\circ} \mathrm{C} \\ 10 \Omega<\mathrm{R} \leqq 10 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm}^{\circ} \mathrm{C} \end{array}$	Rated Current 0.5A Maximum Current I.0A
RC0402	I/I6 W	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	50 V	100V	100V	$\begin{array}{r} 5 \%(E 24) \\ 1 \Omega \leqq R \leqq 22 M \Omega \\ 1 \%(E 24 / E 96) \\ 1 \Omega \leqq R \leqq 10 M \Omega \\ 0.1 \%, 0.5 \%(E 24 / E 96) \\ 10 \Omega \leqq R \leqq 1 M \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leqq R \leqq 10 \Omega \\ \pm 200 \mathrm{ppm}^{\circ} \mathrm{C} \\ 10 \Omega<R \leqq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm}^{\circ} \mathrm{C} \\ 10 \mathrm{M} \Omega<R \leqq 22 \mathrm{M} \Omega \\ \pm 20 \mathrm{ppm}^{\circ} \mathrm{C} \end{array}$	Rated Current 1.0A Maximum Current 2.0A
	I/8W	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	50V	100V	100V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leqq R \leqq I M \Omega \\ 1 \%(E 24 / E 96) \\ 1 \Omega \leqq R \leqq I M \Omega \end{array}$	$I \Omega \leqq R \leqq I M \Omega$ $\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
RC0603	I/IO W	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	75V	150V	150V	$\begin{array}{r} 5 \%(E 24) \\ 1 \Omega \leqq R \leqq 22 M \Omega \\ 1 \%(E 24 / E 96) \\ 1 \Omega \leqq R \leqq 10 M \Omega \\ 0.1 \%, 0.5 \%(E 24 / E 96) \\ 10 \Omega \leqq R \leqq 1 M \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leqq R \leqq 10 \Omega \\ \pm 200 \mathrm{ppm}^{\circ} \mathrm{C} \\ 10 \Omega<R \leqq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm}^{\circ} \mathrm{C} \\ 10 \mathrm{M} \Omega<R \leqq 22 \mathrm{M} \Omega \\ \pm 20 \mathrm{ppm}^{\circ} \mathrm{C} \end{array}$	Rated Current 1.0A Maximum Current 2.0A
	I/5 W	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	75V	150V	150 V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leqq R \leqq I M \Omega \\ 1 \%(E 24 / E 96) \\ I \Omega \leqq R \leqq I M \Omega \end{array}$	$1 \Omega \leqq R \leqq I M \Omega$ $\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
RC0805	I/8 W	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	I50V	300V	300V	$\begin{array}{r} 5 \%(E 24) \\ 1 \Omega \leqq R \leqq 100 \mathrm{M} \Omega \\ 1 \%(E 24 / \mathrm{E} 96) \\ 1 \Omega \leqq R \leqq 10 \mathrm{M} \Omega \\ 0.1 \%, 0.5 \%(E 24 / \mathrm{E} 96) \\ 10 \Omega \leqq \mathrm{R} \leqq \mathrm{IM} \Omega \\ 10 \%, 20 \%(\mathrm{E} 24) \\ 24 \mathrm{M} \Omega \leqq R \leqq 100 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leqq R \leqq 10 \Omega \\ \pm 200 \mathrm{ppm}^{\circ} \mathrm{C} \\ 10 \Omega<\mathrm{R} \leqq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm}{ }^{\circ} \mathrm{C} \\ 10 \mathrm{M} \Omega<\mathrm{R} \leqq 22 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C} \\ 24 \mathrm{M} \Omega<\mathrm{R} \leqq 100 \mathrm{M} \Omega \\ \pm 300 \mathrm{ppm}{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 2.0A Maximum Current 5.0A
	I/4 W	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	I50V	300V	300 V	$\begin{array}{r} 5 \%(E 24) \\ I \Omega \leqq R \leqq I M \Omega \\ 1 \%(E 24 / E 96) \\ I \Omega \leqq R \leqq I M \Omega \end{array}$	$\begin{aligned} & I \Omega \leqq R \leqq \mathrm{IM} \Omega \\ & \pm 200 \mathrm{ppm}^{\circ} \mathrm{C} \end{aligned}$	

FOOTPRINT AND SOLDERNNG PROFILES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting"
Table 2

CHARACTERISTICS	POWER	OPERATING TEMPERATURE RANGE	MAXIMUM WORKING VOLTAGE	$\begin{aligned} & \text { MAXIMUM } \\ & \text { OVERLOAD } \\ & \text { VOLTAGE } \end{aligned}$	DIELECTRIC WITHSTANDING VOLTAGE	RESISTANCE RANGE	TEMPERATURE COEFFICIENT	JUMPER CRITERIA
RCI 206	I/4 W	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	200V	400V	500V	$5 \%(E 24)$ $I \Omega \leqq R \leqq 100 M \Omega$ $1 \%(E 24 / E 96)$ $1 \Omega \leqq R \leqq 10 M \Omega$ $0.1 \%, 0.5 \%(E 24 / E 96)$ $10 \Omega \leqq R \leqq 1 M \Omega$ $10 \%, 20 \%(E 24)$ $24 M \Omega \leqq R \leqq 100 M \Omega$ Jumper $<50 \mathrm{~m} \Omega$	$\begin{array}{r} 1 \Omega \leqq R \leqq 10 \Omega \\ \pm 200 \mathrm{ppm}^{\circ} \mathrm{C} \\ 10 \Omega<\mathrm{R} \leqq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm}^{\circ} \mathrm{C} \\ 10 \mathrm{M} \Omega<\mathrm{R} \leqq 22 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm}^{\circ} \mathrm{C} \\ 24 \mathrm{M} \Omega \leqq \mathrm{R} \leqq 100 \mathrm{M} \Omega \\ \pm 300 \mathrm{ppm}^{\circ} \mathrm{C} \end{array}$	Rated Current 2.0A Maximum Current 10.0A
	I/2 W	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	200V	400V	500V	$\begin{array}{r} 5 \%(E 24) \\ 1 \Omega \leqq R \leqq I M \Omega \\ 1 \%(E 24 / E 96) \\ 1 \Omega \leqq R \leqq I M \Omega \end{array}$	$1 \Omega \leqq R \leqq I M \Omega$ $\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
RCI210	I/2 W	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	200V	500V	500V	$\begin{array}{r} 5 \%(E 24) \\ I \Omega \leqq R \leqq 22 M \Omega \\ 1 \%(E 24 / E 96) \\ 1 \Omega \leqq R \leqq 10 M \Omega \\ 0.1 \%, 0.5 \%(E 24 / E 96) \\ 10 \Omega \leqq R \leqq I M \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leqq R \leqq 10 \Omega \\ \pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C} \\ 10 \Omega<R \leqq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm}{ }^{\circ} \mathrm{C} \\ 10 \mathrm{M} \Omega<R \leqq 22 \mathrm{M} \Omega \\ \pm 20 \mathrm{pppm}^{\circ} \mathrm{C} \end{array}$	Rated Current 2.0A Maximum Current 10.0A
RCl218	I W	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	200V	500 V	500 V	$\begin{array}{r} 5 \%(E 24) \\ I \Omega \leqq R \leqq I M \Omega \\ I \%(E 24 / E 96) \\ 1 \Omega \leqq R \leqq I M \Omega \\ 0.1 \%, 0.5 \%(E 24 / E 96) \\ 10 \Omega \leqq R \leqq I M \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leqq R \leqq 10 \Omega \\ \pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C} \\ 10 \Omega<\mathrm{R} \leqq \mathrm{IM} \Omega \\ \pm 100 \mathrm{ppm}^{\circ} \mathrm{C} \end{array}$	Rated Current 6.0A Maximum Current 10.0A
RC2010	$3 / 4 \mathrm{~W}$	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	200V	500V	500V	$\begin{array}{r} 5 \%(E 24) \\ I \Omega \leqq R \leqq 22 M \Omega \\ I \%(E 24 / E 96) \\ 1 \Omega \leqq R \leqq 10 M \Omega \\ 0.1 \%, 0.5 \%(E 24 / E 96) \\ 10 \Omega \leqq R \leqq 1 M \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leqq R \leqq 10 \Omega \\ \pm 200 \mathrm{ppm}^{\circ} \mathrm{C} \\ 10 \Omega<R \leqq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm}^{\circ} \mathrm{C} \\ 10 \mathrm{M} \Omega<R \leqq 22 \mathrm{M} \Omega \\ \pm 20 \mathrm{ppm}^{\circ} \mathrm{C} \end{array}$	Rated Current 2.0A Maximum Current 10.0A
RC2512	I W	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	200V	500V	500V	$\begin{array}{r} 5 \%(E 24) \\ 1 \Omega \leqq R \leqq 22 M \Omega \\ 1 \%(E 24 / \mathrm{E} 96) \\ 1 \Omega \leqq R \leqq 10 \mathrm{M} \Omega \\ 0.1 \%, 0.5 \%(E 24 / \mathrm{E} 96) \\ 10 \Omega \leqq R \leqq 1 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leqq R \leqq 10 \Omega \\ \pm 200 \mathrm{ppm}^{\circ} \mathrm{C} \\ 10 \Omega<\mathrm{R} \leqq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm}^{\circ} \mathrm{C} \\ 10 \mathrm{M} \Omega<R \leqq 22 \mathrm{M} \Omega \\ \pm 20 \mathrm{ppm}^{\circ} \mathrm{C} \end{array}$	Rated Current 2.0A Maximum Current 10.0A
	2 W	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	200V	400V	500V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leqq R \leqq I M \Omega \\ I \%(E 24 / E 96) \\ I \Omega \leqq R \leqq I M \Omega \end{array}$	$1 \Omega \leqq R \leqq I M \Omega$ $\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	

PACKING STYLE AND PACKAGING @UANTITY
 Table 3 Packing style and packaging quantity

PACKING STYLE	PAPER TAPING REEL (R)	ESD SAFE REEL (S) (4MM WIDTH, IMM PITCH PLASTIC EMBOSSED $)$	EMBOSSED TAPING REEL	
REEL DIMENSION	$7 "(178 \mathrm{~mm})$	$10 "(254 \mathrm{~mm})$	$13 "(330 \mathrm{~mm})$	$7 "(178 \mathrm{~mm})$

NOTE

For tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

RC0402 to RC25I2 Range: $-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$ (Fig. $10-\mathrm{I}$)
RC0075 to RC020I Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Fig. $10-2$)

POWER RATING

Each type rated power at $70^{\circ} \mathrm{C}$:
RC0075 $=1 / 50 \mathrm{~W}$
RCOIOO $=1 / 32 \mathrm{~W}$
RC020I $=1 / 20 \mathrm{~W}$
RC0402 $=1 / 16 \mathrm{~W}, 1 / 8 \mathrm{~W}$
RC0603 $=1 / 10 \mathrm{~W}, \mathrm{I} / 5 \mathrm{~W}$
RC0805 $=1 / 8 \mathrm{~W}, \mathrm{I} / 4 \mathrm{~W}$
RCI $206=1 / 4 \mathrm{~W}, \mathrm{I} / 2 \mathrm{~W}$
RCI210 $=1 / 2 \mathrm{~W}$
RCI218=1W
RC2010=3/4W
RC25I2=IW, 2W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:
$\mathrm{V}=\sqrt{(\mathrm{PxR})}$
or max. working voltage whichever is less
Where
$\mathrm{V}=$ Continuous rated DC or AC (rms) working voltage (V)
$P=$ Rated power (W)

Fig. IO-I Maximum dissipation (P) in percentage of rated poweras a function of the operating ambient temperature (Tamb)

Fig. 10-2 Maximum dissipation (P) in percentage of rated poweras a function of the operating ambient temperature (Tamb)

TESTS AND REQUDREMENTS

Table 8 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS	
Temperature Coefficient of Resistance (T.C.R.)	MIL-STD-202 Method 304	At $+25 /-55^{\circ} \mathrm{C}$ and $+25 /+125^{\circ} \mathrm{C}$ Formula: $\text { T.C.R }=\frac{\mathrm{R}_{2}-\mathrm{R}_{\mathrm{I}}}{\mathrm{R}_{1}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)} \times 10^{6}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$ Where $\mathrm{t}_{1}=+25^{\circ} \mathrm{C}$ or specified room temperature $\mathrm{t}_{2}=-55^{\circ} \mathrm{C}$ or $+125^{\circ} \mathrm{C}$ test temperature $R_{1}=$ resistance at reference temperature in ohms $R_{2}=$ resistance at test temperature in ohms	Refer to table 2	
Life/ Endurance	MIL-STD-202 Method I08A IEC 60\|l5-I 4.25.I	At $70 \pm 2^{\circ} \mathrm{C}$ for 1,000 hours; RCWV applied for 1.5 hours on and 0.5 hour off, still air required	$\begin{aligned} 0075: & \pm(5 \%+100 \mathrm{~m} \Omega) \\ & <100 \mathrm{~m} \Omega \text { for jumper } \\ 01005: & \pm(3 \%+50 \mathrm{~m} \Omega) \\ & <100 \mathrm{~m} \Omega \text { for jumper } \end{aligned}$ Others: $\pm(1 \%+50 \mathrm{~m} \Omega)$ for $B / D / F$ tol $\pm(3 \%+50 \mathrm{~m} \Omega)$ for J tol $<100 \mathrm{mR}$ for jumper	
High Temperature Exposure	MIL-STD-202 Method I08A IEC 60068-2-2	I,000 hours at maximum operating temperature depending on specification, unpowered.	$\begin{aligned} 0075: & \pm(5 \%+100 \mathrm{~m} \Omega) \\ & <100 \mathrm{~m} \Omega \text { for jumper } \\ 0 \mid 005: & \pm(1 \%+50 \mathrm{~m} \Omega) \\ & <50 \mathrm{~m} \Omega \mathrm{f} \text { or jumper } \end{aligned}$ Others: $\pm(1 \%+50 \mathrm{~m} \Omega)$ for B/D/F tol $\pm(2 \%+50 \mathrm{~m} \Omega)$ for J tol $<50 \mathrm{mR}$ for jumper	
Moisture Resistance	MIL-STD-202 Method I06G	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for IOd with $25^{\circ} \mathrm{C} / 65^{\circ} \mathrm{C} 95 \%$ R.H, without steps $7 \mathrm{a} \& 7 \mathrm{~b}$, unpowered Parts mounted on test-boards, without condensation on parts	$\begin{aligned} 0075: & \pm(2 \%+100 \mathrm{~m} \Omega) \\ & <100 \mathrm{~m} \Omega \text { for jumper } \\ 01005: & \pm(2 \%+50 \mathrm{~m} \Omega) \\ & <100 \mathrm{~m} \Omega \text { or jumper } \end{aligned}$ Others: $\pm(0.5 \%+50 \mathrm{~m} \Omega)$ for B/D/F tol $\pm(2 \%+50 \mathrm{~m} \Omega)$ for J tol $<100 \mathrm{mR}$ for jumper	
Humidity	IEC 60\|l	5 - 4.24 .2	Steady state for 1000 hours at $40^{\circ} \mathrm{C} / 95 \%$ R.H. RCWV applied for 1.5 hours on and 0.5 hour off	0075: $\pm(5 \%+100 \mathrm{~m} \Omega)$ no visible damage $\begin{aligned} 0 \mid 005: & \pm(3 \%+50 \mathrm{~m} \Omega) \\ & <100 \mathrm{~m} \Omega \text { f or jumper } \end{aligned}$ Others: $\pm(1 \%+50 \mathrm{~m} \Omega)$ for B/D/F tol $\pm(2 \%+50 \mathrm{~m} \Omega)$ for J tol $<100 \mathrm{mR}$ for jumper

Thermal	MIL-STD-202 Method I07G	$-55 /+125^{\circ} \mathrm{C}$	$\text { 0075/0 } 005: \pm(\mid \%+50 \mathrm{~m} \Omega)$
Shock		Note Number of cycles required is 300 . Devices mounted	$<50 \mathrm{~m} \Omega \mathrm{f}$ or jumper Others:
			$\pm(0.5 \%+50 \mathrm{~m} \Omega)$ for B/D/F tol
		Dwell time is 15 minutes. Air - Air	$\pm(1 \%+50 \mathrm{~m} \Omega)$ for Jtol
			< 50mR for jumper
Short Time Overload	IEC 60\|15-1 4.13	2.5 times RCWV or maximum overload voltage which is less for 5 seconds at room temperature	$\begin{array}{r} 0075 / 0 \mathrm{I} 005: \pm(2 \%+50 \mathrm{~m} \Omega) \\ \text { < } 50 \mathrm{~m} \Omega \text { f or jumper } \end{array}$
			Others:
			$\pm(1 \%+50 \mathrm{~m} \Omega)$ for B/D/F tol
			$\pm(2 \%+50 \mathrm{~m} \Omega)$ for J tol
			<50mR for jumper
			No visible damage
Board Flex/ Bending	IEC 60\|15-1 4.33	Device mounted or as described only I board bending required	$\begin{aligned} & 0075 / 0 \mathrm{I} 005: \pm(1 \%+50 \mathrm{~m} \Omega) \\ & \quad<50 \mathrm{~m} \Omega \mathrm{f} \text { or jumper } \end{aligned}$
		bending time: 60 ± 5 seconds	Others:
		0075/0100/020 1/0402:5mm;	$\pm(1 \%+50 \mathrm{~m} \Omega)$ for B/D/F/J tol
		0603/0805:3mm;	<50mR for jumper
		1206 and above:2mm	No visible damage
Solderability - Wetting	J-STD-002 test B	Electrical Test not required Magnification 50X SMD conditions:	W ell tinned (>95\% covered)
		Ist step: method B, aging 4 hours at $155^{\circ} \mathrm{C}$	No visible damage
		dry heat	
		2nd step: leadfree solder bath at $245 \pm 3^{\circ} \mathrm{C}$	
		Dipping time: 3 ± 0.5 seconds	
-Leaching	J-STD-002 test D	Leadfree solder $, 260^{\circ} \mathrm{C}, 30$ seconds immersion time	No visible damage

-Resistance to	MIL-STD-202 Method 210F	Condition B, no pre-heat of samples	0075: $\pm(3 \%+50 \mathrm{~m} \Omega)$
Soldering Heat	IEC 60115-1 4.18	Leadfree solder, $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, 10 \pm$ I seconds immersion time	$<50 \mathrm{~m} \Omega$ for jumper $\begin{aligned} 01005: & \pm(1 \%+50 \mathrm{~m} \Omega) \\ & <50 \mathrm{~m} \Omega \mathrm{f} \text { or jumper } \end{aligned}$
		Procedure 2 for SMD: devices fluxed and	Others:
			$\begin{aligned} & \pm(0.5 \%+50 \mathrm{~m} \Omega) \text { for B/D/F tol. } \\ & \pm(1 \%+50 \mathrm{~m} \Omega) \text { for } J \text { tol. } \\ & \text { < } 50 \mathrm{mR} \text { for jumper } \end{aligned}$
			No visible damage

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 9	Mar. 06, 2018	-	- Add 0.5\%/1\% marking rule for RC0603 ~ RC25I2 based on marking datasheet
Version 8	July 10, 2017	-	- Add "3W" part number coding for 13" Reel \& double power
Version 7	Mar. 7, 2017	-	- Add 10" packing
Version 6	Feb. 15, 2017	-	- Extend RC0805 and RCI 206 resistance range to 100Mohm
Version 5	Oct. 06, 2016	-	- Description: Update Dimension of I2 of RC25I2 (2W)

Version 4 Jan. 22, 2016 - - update resistance range

Version 3 Dec. 24, 2015 - - Updated test and requirements
Version 2 Jul. 23,2015 - - Updated test and requirements

Version I Jan. 21,2015 - - ESD Safe Reel update

Version $0 \quad$ Dec. 15, 2014

- First issue of this specification

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Thick Film Resistors - SMD category:
Click to view products by Yageo manufacturer:
Other Similar products are found below :
CR-05FL7--150R CR-05FL7--19K6 CR-05FL7--243R CR-05FL7--40K2 CR-05FL7--698K CR-12FP4--324R CR-12JP4--680R M55342K06B6E19RWL MC0603-511-JTW 742C083750JTR MCR01MZPF1202 MCR01MZPF1601 MCR01MZPF1800 MCR01MZPF6201 MCR01MZPF9102 MCR01MZPJ113 MCR01MZPJ121 MCR01MZPJ125 MCR01MZPJ751 MCR03EZHJ103 MCR03EZPFX2004 MCR03EZPJ270 MCR03EZPJ821 MCR10EZPF1102 MCR18EZPJ330 RC0603F1473CS RC0603F150CS RC1005F1152CS RC1005F1372CS RC1005F1912CS RC1005F2052CS RC1005F3011CS RC1005F4642CS RC1005F471CS RC1005F4751CS RC1005F5621CS RC1005F6041CS RC1005J106CS RC1005J121CS RC1005J122CS RC1005J154CS RC1005J180CS RC1005J181CS RC1005J202CS RC1005J272CS RC1005J391CS RC1005J471CS RC1005J512CS RC1005J560CS RC1005J823CS

[^0]: " Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

