

DATA SHEET

METAL OXIDE FILM RESISTORS

General Purpose, Flameproof RSF Series

±2%, ±5% 1/4W to 5W RoHS compliant & Halogen Free

YAGEO

Product specification – August 16, 2021 V.0

de

MOITATE OMIORAH.

10

T

APPLICATIONS

- All general purpose applications
- Power applications

FEATURES

- Wide resistance range
- High stability
- Flameproof coating equivalent to UL-94V-0
- RoHS compliant and halogen
 free

ORDERING INFORMATION

Part number of the metal oxide film resistor is identified by the series, power rating, tolerance, packing, temperature coefficient, forming and resistance value.

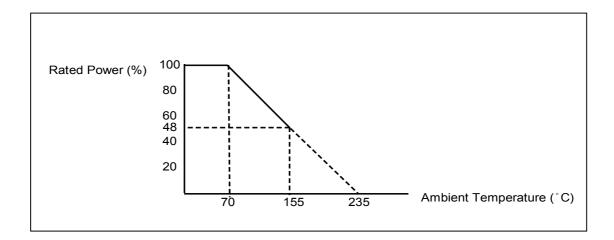
PART NUMBER

RSF

(1) SERIES		
RSF Series		
(2) POWER RATING		
-50 = 1/2W		3WS = 3W
1WS = 1W		300 = 3W
100 = 1W		5WS = 5W
2WS = 2W		5SS = 5W
200 = 2W		500 = 5W
3WM = 3W		
(3) TOLERANCE		
G = ±2%		J = ±5%
(4) PACKAGING		
R = Reel Pack		B = Bulk
T = Box Pack		
(5) TEMPERATURE COEFFIC	CIENT OF R	ESISTANCE
- = Based on spec.		

(6) FORMING

26- = 26mm	FFK = F-form Kink
52- = 52.4mm	FKK = FKK Туре
73- = 73mm	FT = FT Type Forming
91- = 91mm	MT = MT Type Forming
M = M-Type Forming	PN = PANAsert
MB = M-form W/flat	AV = AVIsert
F = F Type	FK = FK Type


(7) RESISTANCE VALUE

E24 Series Example: 1R=1Ω, 100R= 100Ω, 1K = 1,000Ω

DIMENSIONS

						Unit: mm
	Normal	Miniature	L	ψD	н	ψd
	RSF-50	RSF1WS	9.0 ± 0.5	3.3 ± 0.3	26 ± 2.0	0.55 ± 0.05
	RSF100	RSF2WS	11.5 ± 1.0	4.5 ± 0.5	35 ± 2.0	0.8 ± 0.05
	RSF200	RSF3WS	15.5 ± 1.0	5.0 ± 0.5	33 ± 2.0	0.8 ± 0.05
I ← H → I ← − L − → ØD	RSF3WM	RSF5SS	17.5 ± 1.0	6.5±1.0	32 ± 2.0	0.8 ± 0.05
	RSF300	RSF5WS	24.5 ± 1.0	8.5 ± 1.0	38 ± 2.0	0.8 ± 0.05
	RSF500	-	24.5 ± 1.0	8.5 ± 1.0	38 ± 2.0	0.8 ± 0.05

DERATING CURVE

CHARACTERISTICS	RSF-50	RSF100	RSF200	RSF3WM	RSF300	RSF500			
Power Rating at 70 °C	1/2W	1W	2W	3W	3W	5W			
Maximum working voltage	250V	350V	350V	450V	500V	750V			
Maximum overload voltage	400V	600V	600V	700V	800V	1000V			
Voltage Proof on Insulation	350V	500V	500V	500V	500V	500V			
Resistance Range	1Ω – 1MΩ	for E24 series	value						
Operating Temp. Range	- 55°C to +155°C								
Temperature Coefficient	±300ppm/°	±300ppm/°C							

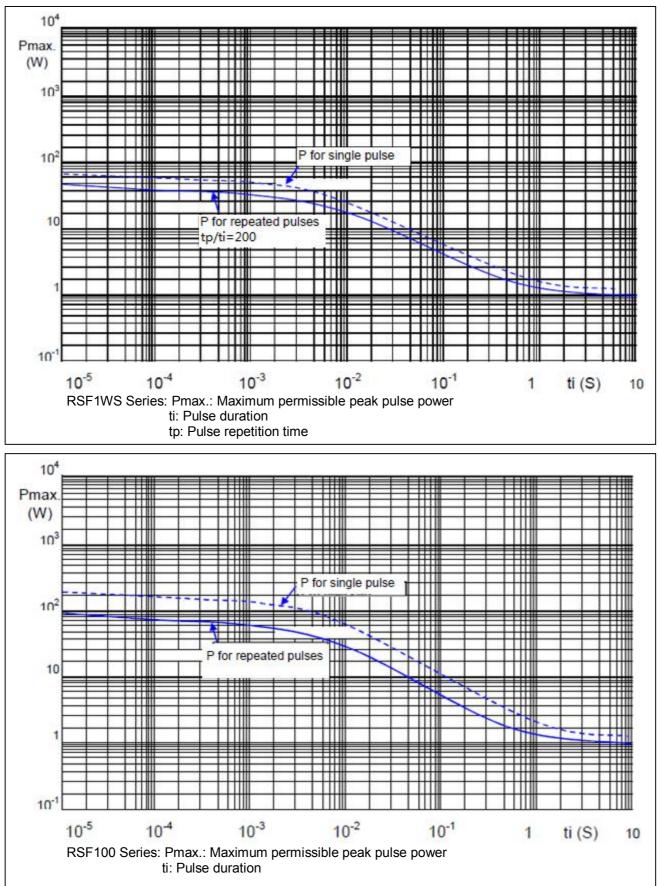
Note: For resistance value out of above range is by request. Below 10Ω and over 100K(excluded) are using alloy film.

CHARACTERISTICS	RSF1WS	RSF2WS	RSF3WS	RSF5SS	RSF5WS		
Power Rating at 70 °C	1W	2W	3W	5W	5W		
Maximum working voltage	300V	350V	350V	500V	700V		
Maximum overload voltage	500V	600V	600V	800V	900V		
Voltage Proof on Insulation	400V	500V	500V	500V	500V		
Resistance Range	1Ω – 1MΩ fo	r E24 series valu	е				
Operating Temp. Range	- 55°C to +155°C						
Temperature Coefficient	±300ppm/°C						

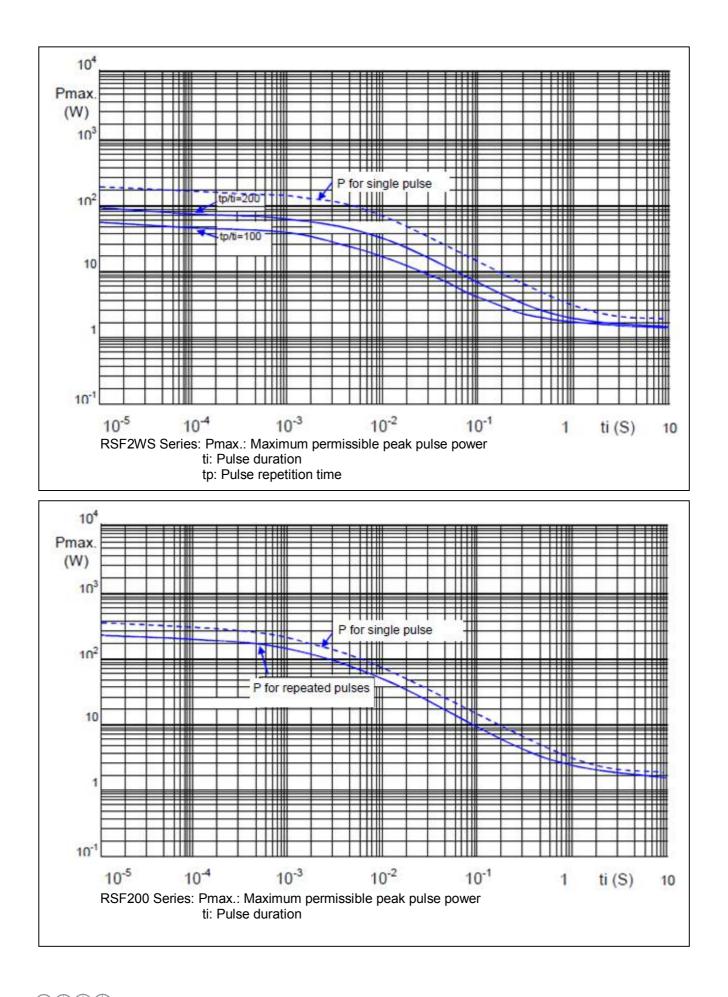
Note: For resistance value out of above range is by request. Below 10Ω and over 100K(excluded) are using alloy film.

TEST AND REQUIRMENTS

TEST	TEST METHOD	PROCEDURE	APPRAISE
Short Time Overload	IEC 60115-1 4.13	2.5 times RCWV for 5 sec. (Not more than maximum overload voltage)	\pm 1%+0.05Ω for normal style \pm 2%+0.05Ω for miniature style
Voltage Proof on Insulation	IEC 60115-1 4.7	In V-Block for 60 sec. test voltage as above table	No Breakdown
Temperature Coefficient	IEC 60115-1 4.8	Between -55°C to +155°C	Ву Туре
Insulation Resistance	IEC 60115-1 4.6	In V-Block for 60 sec.	>1,000MΩ
Solderability	IEC 60115-1 4.17	245±5°C for 3±0.5 Sec.	95% Min. coverage
Solvent Resistance of Marking	IEC 60115-1 4.30	IPA for 5±0.5 Min. with ultrasonic	No deterioration of coatings and markings
Robustness of Terminations	IEC 60115-1 4.16	Direct load for 10 Sec. in the direction of the terminal leads	≥2.5Kg(24.5N)
Periodic-pulse Overload	IEC 60115-1 4.39	4 times RCWV 10,000 cycles (1 Sec. on,25 Sec. off)	±2.0%+0.05Ω
Damp Heat Steady State	IEC 60115-1 4.24	40±2°C,90-95% RH for 56 days, loaded with 0.1 times RCWV	±5.0%+0.05Ω
Endurance at 70°C	IEC 60115-1 4.25	70±2°C at RCWV(or Umax., whichever less) for 1,000 Hr.(1.5 Hr.on,0.5 Hr. off)	±5.0%+0.05Ω
Temperature Cycling	IEC 60115-1 4.19	 → -55°C → Room Temp. → +155°C Room Temp.(5 cycles) 	±1.0%+0.05Ω
Resistance to Soldering Heat	IEC 60115-1 4.18	$260\pm3^{\circ}$ C for 10 ± 1 Sec., immersed to a point 3 ± 0.5 mm from the body	±1.0 %+0.05Ω
Accidental Overload Test	IEC 60115-1 4.26	4 times RCWV for 1 Min.	No evidence of flaming or arcing


Note:

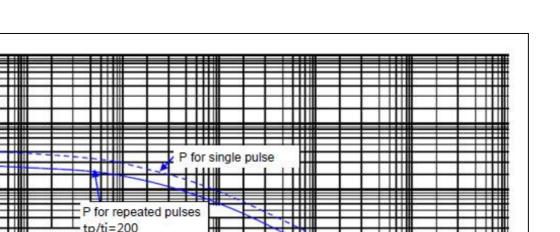
RCWV (Rated Continuous Working Voltage):

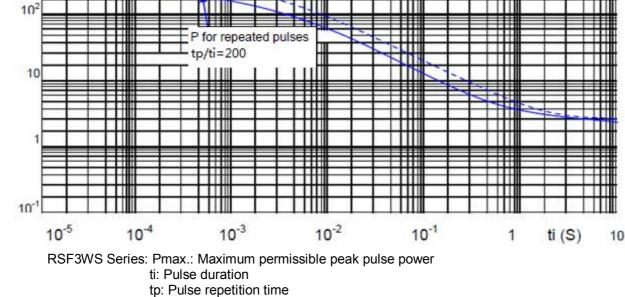

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

V=√(P X R) or max. working voltage whichever is less Where V=Continuous rated DC or AC (rms) working voltage (V) P=Rated power (W) R=Resistance value (Ω)

PULSE DIAGRAMS

19

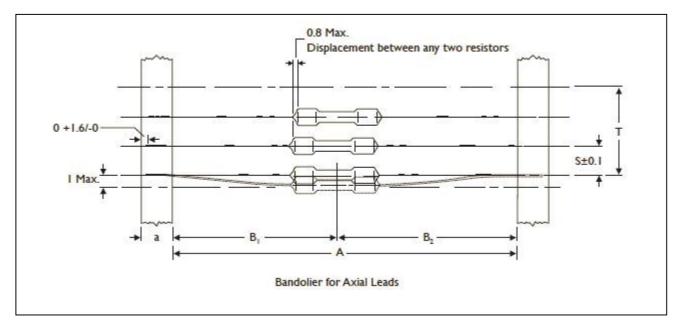

104


Pmax.

(W)

10³

Metal Oxide Film Resistors RSF

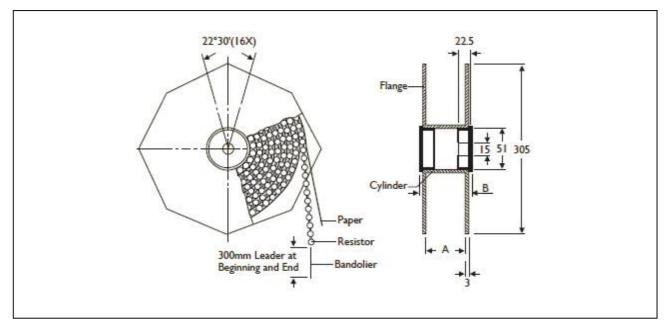


Product Specification

8 19

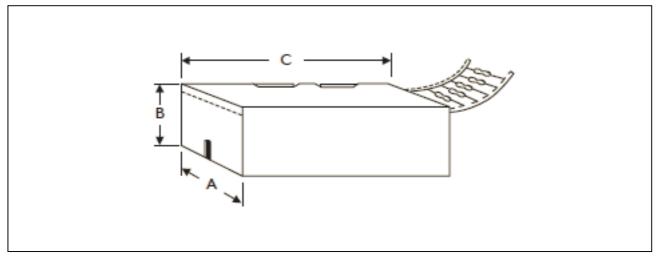
Unit: mm

AXIAL / REEL TAPE SPECIFICATION



Miniature	а	Α	B1-B2 (Max.)	S (spacing)	T (max. deviation of spacing)
RSF1WS	6 ± 0.5	52.4 ± 1.5	1.2	5	
DEFOWE	6 . 0 5	73.0 ± 1.5	1.5	-	-
KOF2WO	0 ± 0.5	52.4 ± 1.5	1.2	- 5	- 1 mm per 10 spacing, 0.5 mm per 5 spacing
	6+05	73.0 ± 1.5	1.5	40	
KOL9M9	0 ± 0.5	52.4 ± 1.5	1.2	- 10	
RSF5SS	6 ± 0.5	73.0 ± 1.5	1.5	10	-
RSF5WS	6 ± 0.5	91.0 ± 1.5	1.5	10	-
-	6 ± 0.5	91.0 ± 1.5	1.5	10	-
	RSF1WS RSF2WS RSF3WS RSF5SS RSF5WS	RSF1WS 6 ± 0.5 RSF2WS 6 ± 0.5 RSF3WS 6 ± 0.5 RSF5SS 6 ± 0.5 RSF5WS 6 ± 0.5	$\begin{array}{c} \text{RSF1WS} & 6 \pm 0.5 & 52.4 \pm 1.5 \\ \text{RSF2WS} & 6 \pm 0.5 & 73.0 \pm 1.5 \\ \hline & 73.0 \pm 1.5 & 52.4 \pm 1.5 \\ \hline & 52.4 \pm 1.5 & 52.4 \pm 1.5 \\ \hline & \text{RSF3WS} & 6 \pm 0.5 & 73.0 \pm 1.5 \\ \hline & \text{RSF5SS} & 6 \pm 0.5 & 73.0 \pm 1.5 \\ \hline & \text{RSF5WS} & 6 \pm 0.5 & 91.0 \pm 1.5 \\ \hline \end{array}$	RSF1WS 6 ± 0.5 52.4 ± 1.5 1.2 RSF2WS 6 ± 0.5 73.0 ± 1.5 1.5 RSF2WS 6 ± 0.5 73.0 ± 1.5 1.2 RSF3WS 6 ± 0.5 73.0 ± 1.5 1.2 RSF3WS 6 ± 0.5 73.0 ± 1.5 1.5 RSF5SS 6 ± 0.5 73.0 ± 1.5 1.5 RSF5WS 6 ± 0.5 91.0 ± 1.5 1.5	$\frac{\text{RSF1WS}}{\text{RSF2WS}} \begin{array}{c} 6 \pm 0.5 \\ 6 \pm 0.5 \end{array} \begin{array}{c} 52.4 \pm 1.5 \\ \hline 73.0 \pm 1.5 \\ \hline 52.4 \pm 1.5 \end{array} \begin{array}{c} 1.2 \\ \hline 5 \\ \hline 52.4 \pm 1.5 \\ \hline 1.2 \\ \hline \\ \hline \\ 8 \\$

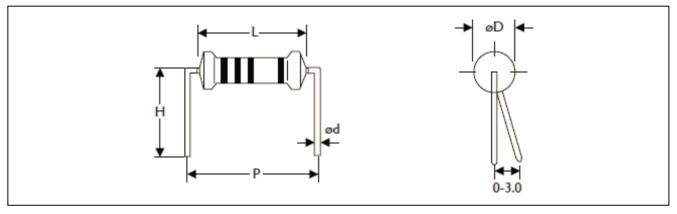
Aug. 16, 2021 V.0


www.yageo.com

TAPE ON REEL PACKING

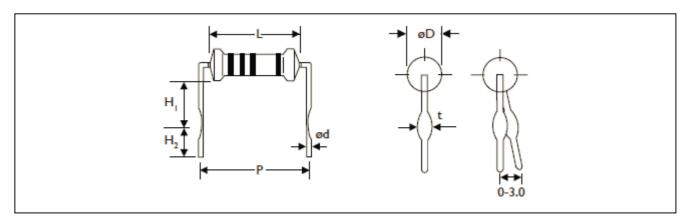
TYPE	Unit: mm/piece			
Normal	Miniature	Across Flange(A)	В	Quantity Per Reel
RSF-50	RSF1WS	66.5	75.5	2,500
RSF100	RSF2WS	87	96	2,000
RSF200	RSF3WS	87	96	1,000
RSF3WM	RSF5SS	87	96	1,000

TAPE ON BOX PACKING

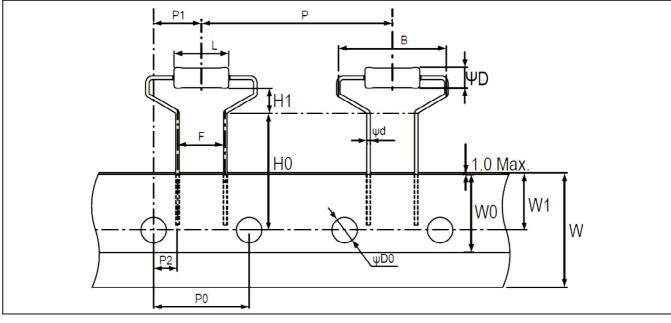

TYPE		DIMENSION	S		Unit: mm/piece
Normal	Miniature	Α	В	С	Quantity Per Box
RSF-50	RSF1WS	73	45	258	1,000
RSF100	RSF2WS	81	91	260	1,000
RSF100	RSF2WS	103	78	260	1,000
RSF200	RSF3WS	81	91	260	1,000
RSF200	RSF3WS	103	94	260	1,000
RSF3WM	RSF5SS	103	78	260	500
RSF300	RSF5WS	116	79	255	250
RSF500	-	116	79	255	250

BULK PACKING

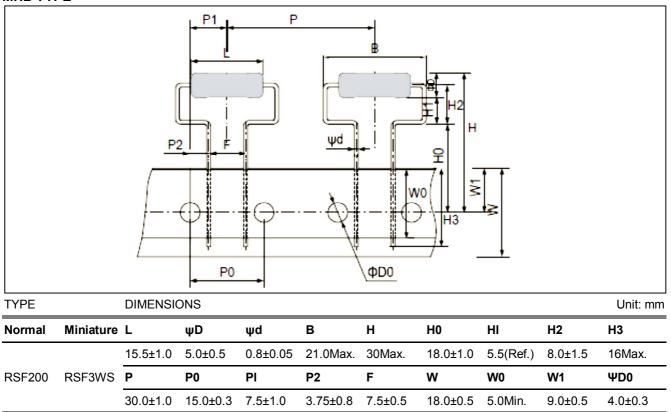
Normal	Miniature	Piece/Per Inner Box	Bag/Per Inner Box	Piece Per Bag
RSF-50	RSF1WS	5,000	5	1,000
RSF100	RSF2WS	2,000	4	500
RSF200	RSF3WS	1,000	2	500
RSF3WM	RSF5SS	1,000	2	500
RSF300	RSF5WS	500	10	50
RSF500	-	500	10	50


FORMING

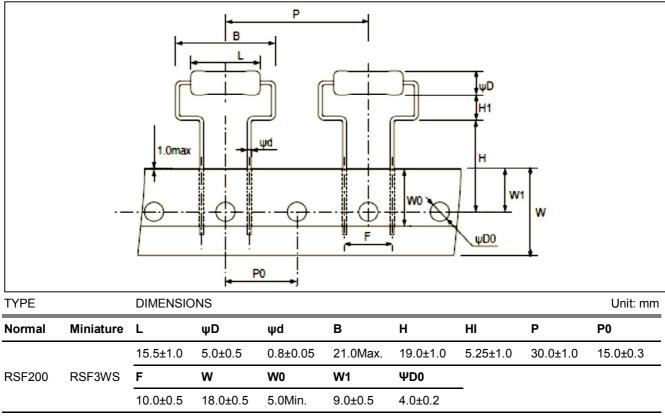
M TYPE

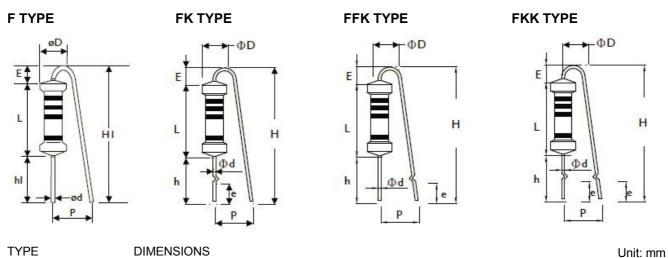

TYPE		DIMENSIONS	5			Unit: mm
Normal	Miniature	L	ψD	ψd	Р	н
RSF-50	RSF1WS	9.0 ± 0.5	3.3± 0.3	0.55 ± 0.05	12.5 ± 1	10.0 ± 1
RSF100	RSF2WS	11.5 ± 1.0	4.5 ± 0.5	0.8 ± 0.05	15.0 ± 1	12.5 ± 1
RSF200	RSF3WS	15.5 ± 1.0	5.0 ± 0.5	0.8 ± 0.05	20.0 ± 1	15.0 ± 1
RSF3WM	RSF5SS	17.5 ± 1.0	6.5 ± 1.0	0.8 ± 0.05	25.0 ± 1	15.0 ± 1
RSF300	RSF5WS	24.5 ± 1.0	8.5 ± 1.0	0.8 ± 0.05	30.0 ± 1	15.0 ± 1

MB TYPE

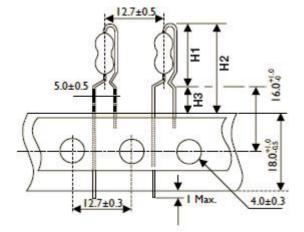

TYPE		DIMENSIONS						Unit: mm
Normal	Miniature	L	ψD	ψd	Р	H1	H2	t
RSF-50	-	9.0 ± 0.5	3.3± 0.3	0.55 ± 0.05	12.5 ± 1	6.0 ± 1	5.0 ± 1	1.2 ± 0.2
-	RSF1WS	9.0 ± 0.5	3.3± 0.3	0.8 ± 0.05	12.5 ± 1	6.0 ± 1	5.0 ± 1	1.4 ± 0.2
RSF100	RSF2WS	11.5 ± 1.0	4.5 ± 0.5	0.8 ± 0.05	15.0 ± 1	6.0 ± 1	5.0 ± 1	1.4 ± 0.2
RSF200	RSF3WS	15.5 ± 1.0	5.0 ± 0.5	0.8 ± 0.05	20.0 ± 1	10.0 ± 1	5.0 ± 1	1.4 ± 0.2
RSF3WM	RSF5SS	17.5 ± 1.0	6.5 ± 1.0	0.8 ± 0.05	25.0 ± 1	10.0 ± 1	5.0 ± 1	1.4 ± 0.2
RSF300	RSF5WS	24.5 ± 1.0	8.5 ± 1.0	0.8 ± 0.05	30.0 ± 1	15.0 ± 1	5.0 ± 1	1.4 ± 0.2
RSF500	-	24.5 ± 1.0	8.5 ± 1.0	0.8 ± 0.05	30.0 ± 1	15.0 ± 1	5.0 ± 1	1.4 ± 0.2

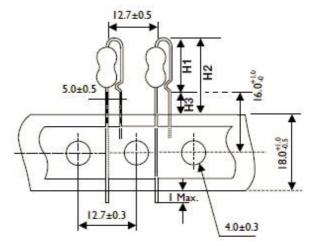
MHA TYPE




TYPE		DIMENSIC	NS						Unit: mm
Normal	Miniature	L	ψD	ψd	В	H0	н	Р	P0
		9.0±0.5	3.3±0.3	0.55±0.05	17.5Max	19.0±1.0	4.0±1.0	30.0±1.0	15.0±0.3
RSF-50	RSF1WS	P1	P2	F	W	W0	W1	ΨD0	
		7.5±1.0	3.75±0.5	7.5±0.5	18.0±0.5	5.0Min	9.0±0.5	4.0±0.2	_

MHB TYPE

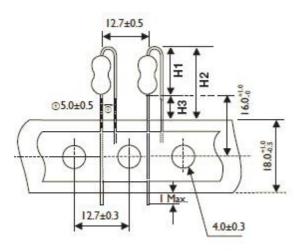




Normal	Miniature	L	ψD	ψd	Ρ	h	H Max.	hl	HI Max.	E Max.	е
RSF-50	RSF1WS	9.0±0.5	3.3±0.3	0.55±0.05	6±1	8±1	22	5±1	18.5	3.5	3.5±1
RSF100	RSF2WS	11.5±1	4.5±0.5	0.8±0.05	6±1	8±1	24	5±1	20	3.5	3.5±1
RSF200	RSF3WS	15.5±1	5.0±0.5	0.8±0.05	8±1	8±1	28	5± 1	25	3.5	3.5±1

| K2L

PN TYPE (Taping Pack)



AV TYPE (Taping Pack)

TYPE		DIMEN	ISIONS	Unit: mm
Normal	Miniature	H1 Max.	H2 Max.	H3 Max.
RSF-50	RSF1WS	17	25.5	8.5
RSF100	RSF2WS	19	27.5	8.5

TYPE		DIMEN	Unit: mm	
Normal	Miniature	H1 Max.	H2 Max.	H3 Max.
RSF-50	RSF1WS	14.5	23	8.5
RSF100	RSF2WS	17.5	26	8.5

FT TYPE (Taping Pack)

TYPE		DIMEN	ISIONS	Unit: mm	
Normal	Miniature	H1 Max.	H2 Max.	H3 Max.	
RSF-50	RSF1WS	13	21.5	8.5	
RSF100	RSF2WS	16	24.5	8.5	

19

MARKING

		ND-CODE %, ±5%			
COLOR	1st BAND	2nd BAND	3rd BAND	MULTIPLIER	TOLERANCE
BLACK	0	0	0	1Ω	
BROWN	1	1	1	10Ω	
RED	2	2	2	100Ω	± 2% (G)
ORANGE	3	3	3	1ΚΩ	
YELLOW	4	4	4	10KΩ	
GREEN	5	5	5	100K	
BLUE	6	6	6	1MΩ	
VIOLET	7	7	7	10MΩ	
GREY	8	8	8	0.001Ω	
WHITE	9	9	9	0.0001Ω	
GOLD				0.1Ω	± 5 % (J)
SILVER				0.01Ω	

YAGEO | Through Hole Resistors

Metal Oxide Film Resistors RSF

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 0	Aug.16 , 2021	-	- First issue of this specification

"Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itse If are unchanged. Any product change will be announced by PCN."

LEGAL DISCLAIMER

Yageo, its distributors and agents (collectively, "Yageo"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. Yageo may make changes, modifications and/or improvements to product related information at any time and without notice.

Yageo makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, Yageo disclaims (i) any and all liability arising out of the application or use of any Yageo product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

Yageo statements regarding the suitability of products for certain types of applications are based on Yageo's knowledge of typical operating conditions for such types of applications in a generic nature. Such statements are neither binding statements of Yageo nor intended to constitute any warranty concerning the suitability for a specific customer application or use. They are intended for use only by customers with requisite knowledge and experience for determining whether Yageo products are the correct products for their application or use. In addition, unpredicatable and isolated cases of product failure may still occur, therefore, customer application or use of Yageo products which requires higher degree of reliability or safety, shall employ additional protective safeguard measures to ensure that product failure would not result in personal injury or property damage.

Yageo products are not designed for application or use in medical, life-saving, or life-sustaining devices or for any other application or use in which the failure of Yageo products could result in personal injury or death. Customers using or selling Yageo products not expressly indicated for above-mentioned purposes shall do so at their own risk and agree to fully indemnify Yageo and hold Yageo harmless.

Information provided here is intended to indicate product specifications only. Yageo reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Metal Oxide Resistors category:

Click to view products by Yageo manufacturer:

Other Similar products are found below :

 009260C
 FA87/180R/5%
 RSF2JT9K10
 SBL4R010J
 R0229
 M012CT52R220J
 434529B
 WMO5S-100KJA05
 054084X
 054211G
 054220E

 095734G
 WK202070A1003JD500
 RSF5SSJR-73-250R
 WR404140A2208JFE00
 RSF2JT1K60
 MOSX1CT528R2R20F
 2W218-BULK

 2W320-BULK
 RSF5SSJT-73-170R
 RSF1WSJT-52-400K
 RSF-25JT-52-330RW
 RSF200JT-73-0R52
 ROX2SJ4K3
 ROX5SJ120R

 ROX3SJR10
 ROX2SJ200K
 RSF200JT-73-0R27
 RSF1WSJT-52-140R
 RSF50SJT-52-0R1
 RSF50SJT-52-0R39
 RSF100JT-73-8R2

 RSF50SJT-52-200K
 RSF-50JT-52-2M
 RSF50SJT-52-820K
 RSF-50JT-52-2R2
 ROX05SJ8K2
 ROX05SJ15K
 ROX05SJ16K

 ROX05SJ18K
 ROX05SJ36K
 ROX05SJ43K
 ROX5SSJ36K
 6-1676123-0
 6-1676123-3
 1-1625892-3
 3-1625892-4
 2176415-7