

# DATA SHEET SURGE CHIP RESISTORS

SR series

sizes 0402/0603/0805/1206/1210/1218/2010/2512 RoHS compliant & Halogen free



YAGEO Phícomp



#### SCOPE

This specification describes SR0402 to SR2512 chip resistors with lead-free terminations made by thick film process.

#### **APPLICATIONS**

- Telecommunications
- Power supplies
- Car electronics

#### **FEATURES**

- AEC-Q200 qualified
- Superior to SR series in pulse withstanding voltage and surge withstanding voltage.
- MSL class: MSL I
- Halogen free epoxy
- RoHS compliant
  - Products with lead-free terminations meet RoHS requirements
  - Pb-glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reduce environmentally hazardous waste
- High component and equipment reliability

#### ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

#### **GLOBAL PART NUMBER**

## SR XXXX X X X XX XXXX L

(1) (2) (3) (4) (5) (6) (7

#### (I) SIZE

0402 / 0603 / 0805 / 1206 / 1210 / 1218 / 2010 / 2512

#### (2) TOLERANCE

 $| = \pm 5\%$ 

 $K = \pm 10\%$ 

 $M = \pm 20\%$ 

# (3) PACKAGING TYPE

R = Paper taping reel

K = Embossed taping reel

#### (4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Based on spec.

#### (5) TAPING REEL & POWER

07 = 7 inch dia. Reel 7W = 7 inch dia. Reel &  $2 \times$  standard power

13 = 13 inch dia. Reel  $3 \times 3$  standard power

47 = 7 inch dia. Reel & 4xstandard power

#### (6) RESISTANCE VALUE

#### $I \Omega \leq R \leq IM \Omega$

There are 2~4 digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

#### (7) DEFAULT CODE

Letter L is the system default code for ordering only. (Note)

| number<br>Resistance coding<br>rule | Example                                                     |
|-------------------------------------|-------------------------------------------------------------|
| XRXX<br>(1 to 9.76 Ω)               | $IR = I \Omega$ $IR5 = I.5 \Omega$                          |
| XXRX<br>(10 to 97.6 Ω)              | $9R76 = 9.76 \Omega$ $10R = 10 \Omega$ $97R6 = 97.6 \Omega$ |
| XXXR<br>(100 to 976 Ω)              | $100R = 100 \Omega$                                         |
| XKXX<br>(1 to 9.76 KΩ)              | IK = I,000 Ω<br>9K76 = 9760 Ω                               |
| XXKX<br>(10 to 97.6 KΩ)             | $10K = 10,000 \Omega$<br>97K6= 976,000 Ω                    |
| XXXK<br>(100 KΩ)                    | 100Κ = 100,000 Ω                                            |

Resistance rule of global part

# ORDERING EXAMPLE

The ordering code for an SR0805 chip resistor, value 10 K $\Omega$  with  $\pm 5\%$  tolerance, supplied in 7-inch tape reel is: SR0805JR-0710KL.

## MARKING

#### SR0402



No Marking

Fig. I

SR1218



E-24 series: 3 digits

First two digits for significant figure and 3rd digit for number of zeros

#### SR0603 / SR0805 / SR1206 / SR1210 / SR2010 / SR2512



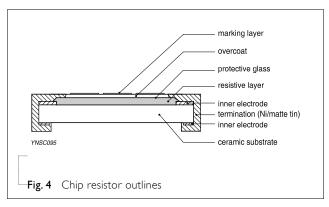
E-24 series: 3 digits

First two digits for significant figure and 3rd digit for number of zeros

# NOTE

For further marking information, please refer to data sheet "Chip resistors marking".

#### TAPING REEL & POWER


Table I

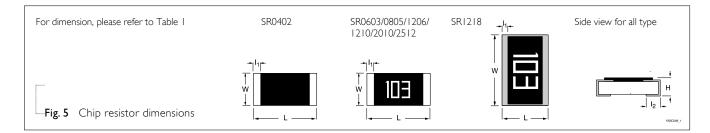
|      |      | P    | OWER, W (P70) |     |  |
|------|------|------|---------------|-----|--|
| TYPE |      |      | CODING        |     |  |
|      | 07   | 7W   | 7T            | 47  |  |
| 0402 | 1/16 | 1/8  | 1/5           | -   |  |
| 0603 | 1/10 | 1/5  | 1/4           | -   |  |
| 0805 | 1/8  | 1/4  | 1/3           | 1/2 |  |
| 1206 | 1/4  | 1/2  | 3/4           | 1   |  |
| 1210 | 1/2  | I    | -             | -   |  |
| 1218 | 1    | 1.5  | -             | -   |  |
| 2010 | 3/4  | 1.25 | -             | -   |  |
| 2512 | 1    | 2    | -             | -   |  |

#### **CONSTRUCTION**

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a lead-free glass. The composition of the glaze is adjusted to give the approximately required resistance value. The whole element is covered by a protective overcoat. The top of overcoat is marked with the resistance value. Finally, the two external terminations (Ni/matte tin) are added, as shown in Fig.4.

# **OUTLINES**






<u>4</u> 8

# **DIMENSIONS**

Table 2

| TYPE   | L (mm)    | W (mm)    | H (mm)    | I <sub>I</sub> (mm) | $I_2$ (mm) |
|--------|-----------|-----------|-----------|---------------------|------------|
| SR0402 | 1.00±0.05 | 0.50±0.05 | 0.35±0.05 | 0.20±0.10           | 0.25±0.10  |
| SR0603 | 1.60±0.10 | 0.80±0.10 | 0.45±0.10 | 0.25±0.15           | 0.25±0.15  |
| SR0805 | 2.00±0.10 | 1,25±0.10 | 0.50±0.10 | 0.35±0.20           | 0.35±0.20  |
| SR1206 | 3.10±0.10 | 1.60±0.10 | 0.55±0.10 | 0.45±0.20           | 0.40±0.20  |
| SR1210 | 3.10±0.10 | 2.60±0.15 | 0.55±0.10 | 0.45±0.15           | 0.50±0.20  |
| SR1218 | 3.10±0.10 | 4.60±0.10 | 0.55±0.10 | 0.45±0.20           | 0.40±0.20  |
| SR2010 | 5.00±0.10 | 2.50±0.15 | 0.55±0.10 | 0.55±0.15           | 0.50±0.20  |
| SR2512 | 6.35±0.10 | 3.10±0.15 | 0.55±0.10 | 0.60±0.20           | 0.50±0.20  |



# **ELECTRICAL CHARACTERISTICS**

# Table 3

|        |                               |                                    | CHARACTERISTICS                |                            |                             |                                       |                                                                                  |
|--------|-------------------------------|------------------------------------|--------------------------------|----------------------------|-----------------------------|---------------------------------------|----------------------------------------------------------------------------------|
| TYPE   | POWER                         | resistance<br>range                | Operating Temperature<br>Range | Max.<br>Working<br>Voltage | Max.<br>Overload<br>Voltage | Dielectric<br>Withstanding<br>Voltage | Temperature<br>Coefficient of<br>Resistance                                      |
| SR0402 | 1/16W<br>1/8W<br>1/5W         |                                    |                                | 50 V                       | 100 V                       | 100 V                                 |                                                                                  |
| SR0603 | 1/10W<br>1/5W<br>1/4W         |                                    |                                | 75V                        | 150V                        | 150V                                  |                                                                                  |
| SR0805 | 1/8 W<br>1/4W<br>1/3W<br>1/2W |                                    |                                | 150V                       | 300V                        | 300V                                  | $10\Omega < R \le 1M\Omega$                                                      |
| SR1206 | 1/4 W<br>1/2W<br>3/4W         | E24 5%, 10%, 20%<br>I Ω ≤ R ≤ IM Ω | –55 °C to +155 °C              | 200 V                      | 400 V                       | 500 ∨                                 | $\pm 100 \text{ ppm/°C}$ $I\Omega \leq R \leq 10\Omega$ $\pm 200 \text{ ppm/°C}$ |
| SR1210 | 1/2W                          |                                    |                                | 200 V                      | 400 V                       | 500 V                                 |                                                                                  |
| SR1218 | IW_                           |                                    |                                | 200 V                      | 400 V                       | 500 V                                 |                                                                                  |
| SR2010 | 3/4W<br>1.25W                 |                                    |                                | 200 V                      | 400 V                       | 500 V                                 |                                                                                  |
| SR2512 | I W                           |                                    |                                | 200 V                      | 400 V                       | 500 V                                 |                                                                                  |

8

# FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

# PACKING STYLE AND PACKAGING QUANTITY

Table 4 Packing style and packaging quantity

| PACKING STYLE            | REEL DIMENSION | SR0402 | SR0603/0805/1206 | SR1210 | SR1218/2010/2512 |
|--------------------------|----------------|--------|------------------|--------|------------------|
| Paper taping reel (R)    | 7" (178 mm)    | 10,000 | 5,000            | 5,000  |                  |
|                          | 13" (330 mm)   | 50,000 | 20,000           | 20,000 |                  |
| Embossed taping reel (K) | 7" (178 mm)    |        |                  |        | 4,000            |

#### NOTE

I. For paper/embossed tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

#### FUNCTIONAL DESCRIPTION

#### **OPERATING TEMPERATURE RANGE**

Range: -55 °C to +155 °C

#### **POWER RATING**

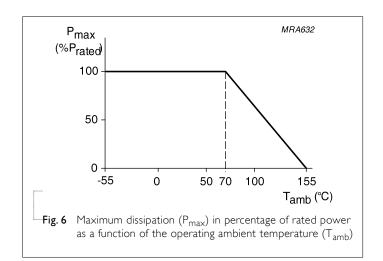
Each type rated power at 70 °C: SR0402: I/16W, I/8W, I/5W SR0603: I/10W, I/5W, I/4W SR0805: I/8W, I/4W, I/3W, I/2W SR1206: I/4W, I/2W, 3/4W, IW

SR1210: 1/2W, 1W SR1218: 1W, 1.5W SR2010: 3/4W, 1.25W

SR2512: IW, 2W

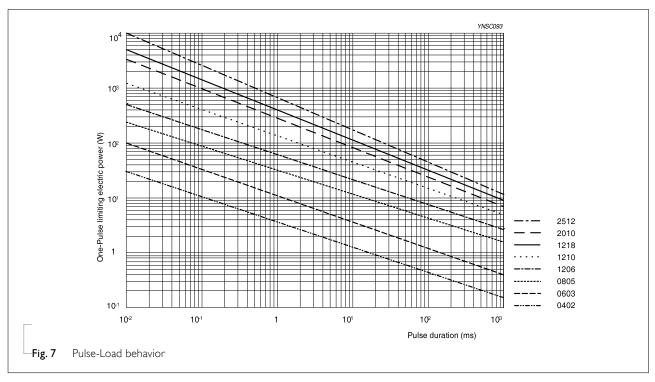


The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(P \times R)}$$

#### Where

V = Continuous rated DC or AC (rms) working voltage (V)


P = Rated power (W)

 $R = Resistance value (\Omega)$ 



# 8

#### **PULSE LOAD BEHAVIOR**



# TESTS AND REQUIREMENTS

Table 5 Test condition, procedure and requirements

| TEST                         | TEST METHOD            | PROCEDURE                                                                                              | REQUIREMENTS                |
|------------------------------|------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------|
| Temperature Coefficient of   | MIL-STD-202 Method 304 | At +25/–55 °C and +25/+125 °C                                                                          | Refer to table 2            |
| Resistance (T.C.R.)          |                        | Formula:                                                                                               |                             |
|                              |                        | T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$                                     |                             |
|                              |                        | Where                                                                                                  |                             |
|                              |                        | $t_1$ = +25 °C or specified room temperature                                                           |                             |
|                              |                        | $t_2$ = –55 °C or +125 °C test temperature                                                             |                             |
|                              |                        | R <sub>I</sub> =resistance at reference temperature in ohms                                            |                             |
|                              |                        | R <sub>2</sub> =resistance at test temperature in ohms                                                 |                             |
|                              |                        |                                                                                                        |                             |
| Short Time Overload          | IEC60115-1 4.13        | 2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec at room temperature | ±(2.0%+0.05 Ω)              |
|                              |                        | ·                                                                                                      |                             |
| High Temperature<br>Exposure | IEC 60068-2-2          | 1,000 hours at $T_A$ = 155 °C ±5 °C, unpowered                                                         | ±(3.0%+0.05 Ω)              |
|                              |                        |                                                                                                        |                             |
| Humidity                     | IEC 60115-1 4.24.2     | Steady state for 1,000 hours at 40 °C / 95% R.H.                                                       | $\pm (3.0\% + 0.05 \Omega)$ |
|                              |                        | RCWV applied for 1.5 hours on and 0.5 hour off                                                         |                             |

 Chip Resistor Surface Mount
 SR
 SERIES
 0402/0603/0805/1206/1210/1218/2010/2512

| TEST                   | TEST METHOD             | PROCEDURE                                                                                                       | REQUIREMENTS                |
|------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|
| Life                   | IEC 60115-1 4.25.1      | 1,000 hours at 70±2 °C, RCWV applied for 1.5                                                                    | ±(3.0%+0.05 Ω)              |
|                        | MIL-STD-202 Method 108  | hours on, 0.5 hour off, still-air required                                                                      |                             |
|                        |                         |                                                                                                                 |                             |
| Resistance to          | IEC 60115-1 4.18        | Condition B, no pre-heat of samples                                                                             | $\pm (1.0\% + 0.05 \Omega)$ |
| Soldering Heat         | MIL-STD- 202 Method 210 | Lead-free solder, 260 $\pm$ 5 °C, 10 $\pm$ 1 seconds immersion time                                             | No visible damage           |
|                        |                         | Procedure 2 for SMD: devices fluxed and cleaned with isopropanol                                                |                             |
| Temperature<br>Cycling | JESD22-A104C            | -55/+125 °C for I cycle per hour, with 1,000 cycles.                                                            | ±(1.0%+0.05 Ω)              |
|                        |                         | Devices mounted                                                                                                 |                             |
| Solderability          |                         |                                                                                                                 |                             |
| - Wetting              | J-STD-002               | Electrical Test not required Magnification 50X                                                                  | Well tinned (≥95% covered)  |
|                        |                         | SMD conditions:                                                                                                 | No visible damage           |
|                        |                         | Immerse the specimen into the solder pot at $245\pm3$ °C for $2\pm0.5$ seconds.                                 |                             |
|                        |                         |                                                                                                                 |                             |
| Board Flex             | IEC 60115-1 4.33        | Chips mounted on a 90mm glass epoxy resin                                                                       | +(1.0%+0.05 Ω)              |
| Board Flex             | IEC 60115-1 4.33        | Chips mounted on a 90mm glass epoxy resin PCB (FR4)  Bending for 0402: 5mm 0603 & 0805: 3mm 1206 and above: 2mm | ±(1.0%+0.05 Ω)              |

8

8

# **Chip Resistor Surface Mount**

SR SERIES

## 0402/0603/0805/1206/1210/1218/2010/2512

# REVISION HISTORY

| REVISION  | DATE          | CHANGE NOTIFICATION | DESCRIPTION                                                                                           |
|-----------|---------------|---------------------|-------------------------------------------------------------------------------------------------------|
| Version 8 | Jul. 22, 2019 | -                   | - Update power rating                                                                                 |
|           |               |                     | - Extend resistance range of 0402 ~ 2512 to IMohm,                                                    |
| Version 7 | Sep. 27, 2018 | -                   | - Tighten TCR of all sizes for $10\Omega < R \leq IM\Omega$ from $\pm~200$ ppm/°C to $\pm~100$ ppm/°C |
|           |               |                     | - Add SRI210, SRI218, SR2010 7W (double power)                                                        |
| Version 6 | Oct. 02, 2017 | -                   | - Add SR0402 7T (triple power), SR0805 47 (quadruple power), SR2512 7W (double power)                 |
| Version 5 | Nov.11, 2016  | -                   | - Update 7T power for 1206                                                                            |
|           | 6 01 2015     | 01. 2015            | - Update SR0603 Dielectric Withstanding Voltage to 150V                                               |
| Version 4 | Sep. 01, 2015 | -                   | - Update 7T power for 0603/0805 & 7W for 1210                                                         |
| Version 3 | Jul. 31, 2015 | -                   | - Comply with AEC-Q200 standard                                                                       |
|           | 2 1 0/ 2014   |                     | - Add SR0402/0603/1210                                                                                |
| Version 2 | Jan. 06, 2014 | -                   | - Update electrical characteristic                                                                    |
| Version I | Mar 18, 2011  | -                   | - Change to dual brand datasheet that describes SR0805 to SR2512 with RoHS compliant                  |
|           |               |                     | - Define global part number                                                                           |
| Version 0 | Oct 19, 2004  | -                   | -                                                                                                     |

<sup>&</sup>quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products are unchanged. Any product change will be announced by PCN."

<sup>&</sup>quot;The reimbursement is limited to the value of the products."

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thick Film Resistors - SMD category:

Click to view products by Yageo manufacturer:

Other Similar products are found below:

CRCW04028R20JNEE CRCW06036K80FKEE CRG1206F1K58 CRL0603-FW-R700ELF M55342K06B6E19RWL RC1005F1072CS

RC1005F471CS RC1005F4751CS RCP0603W100RGED RCWP72251K47FKWB RLR05C7501GPB14 RLR07C5111FSBSL ERJ
IGMF1R00C ERJ-1GMF1R20C ERJ-1GMF2R55C ERJ-1GMF8R66C 25121WF1003T4E 25121WF220JT4E 25121WF470KT4E

25.501.3653.0 290-1.0M-RC 292-1.0M-RC 292-2.2K-RC 292-4.7K-RC 25121WF4700T4E 292-470K-RC 302-1.0M-RC CPG1206F10KC

CRCW02011R00FXED CRCW060315K0FKEE CRCW06031K30FKEC CRCW060320K5FKEE CRG0201F10K RCG0402150RFKED

RCG04023K92FKED RCP2512B100RGWB RCWP110010R0FKS3 RCWP11002K00FKS3 RCWP12061K00FKS2 3520510RJT

352075KJT M55342K11B9E53RUL RMC16-102JT RMC1JPTE TR0603MR-075K1L 5-2176094-4 35202K7JT WF06Q1000FTL ERJS03J1R0V ERJ-S14J4R7U