DATA SHEET nifil cill fisisiois
 YC/TC
 5\%, I\%
 sizes

YC:I02/I04/I22/I24/I62/I64/248/324/I58T/358L/358T TC: I22/I 24/I64

RoHS compliant

YAC=O

Product Specification - February 2I, 2019 V. 9

1840

(a) पया

SCOPE

This specification describes YC (convex, flat) and TC (concave) series chip resistor arrays with leadfree terminations made by thick film process.

APPLICATJONS

- Terminal for SDRAM and DDRAM
- Computer applications: laptop computer, desktop computer
- Consume electronic equipments: PDAs, PNDs
- Mobile phone, telecom...

FEATURES

- AEC-Q200 qualified
- More efficient in pick \& place application
- Low assembly costs
- RoHS compliant
- Products with lead free terminations meet RoHS requirements
- Pb-glass contained in electrodes
- Resistor element and glass are exempted by RoHS
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production
- Halogen Free Epoxy

ORDERJNG INFORMATION - GLOBAL PART NUMBER \& ${ }^{3}$ I2NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code GLOBAL PART NUMBER (PREFERSRED)

YC $\quad \underline{X X X X} \underline{X} \underline{X} \underline{X X X X X X}$
$\mathbf{T C} \quad$ (1) \quad (2)
(I) SIZE

YC:I02/|04/|22/|24/|62/|64/248/324/|58T/358L/358T
TC: $122 / 124 / 164$
(2) ARRAYS OR NETWORKS

Array YCI 02/I04/I22/I24/I62/164/248/324: -
Network YCI58T/YC358L/YC358T: NA
(3) TOLERANCE
$F= \pm 1 \% \quad J= \pm 5 \%$ (for Jumper ordering, use code of J$)$
(4) PACKAGING TYPE
$\mathrm{R}=$ Paper taping reel $\mathrm{K}=$ Embossed plastic tape reel
(5) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec
(6) TAPING REEL
$07=7$ inch dia. Reel
$13=13$ inch dia. Reel
(7) RESISTANCE VALUE

There are 2~4 digits indicated the resistor value. Letter R/K/M is decimal point.
Detailed resistance rules show in table of "Resistance rule of global part number".
(8) DEFAULT CODE

Letter L is the system default code for ordering only. (Note)
Letter T is the only default code for YCI 02 .

Ordering example

The ordering code of a YCI 22 convex chip resistor array, value $I, 000 \Omega$ with $\pm 5 \%$ tolerance, supplied in 7 -inch tape reel is: YCI22-JR-07IKL.

YCI58T network, value $100,000 \Omega$ with 5% tolerance, supplied in 7 -inch tape reel is: YCI58TJR-07I00KL

NOTE

I. All our RSMD products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

Resistance rule of global part number	
Resistance code rule	Example
OR	OR = jumper
$\begin{aligned} & \text { XRXX } \\ & \text { (I to } 9.76 \Omega \text {) } \end{aligned}$	$\begin{array}{r} 1 \mathrm{R}=1 \Omega \\ 1 \mathrm{R} 5=1.5 \Omega \\ 9 \mathrm{R} 76=9.76 \Omega \end{array}$
$\begin{aligned} & \text { XXRX } \\ & (10 \text { to } 97.6 \Omega) \\ & \hline \end{aligned}$	$\begin{array}{r} 1 O R=10 \Omega \\ 97 R 6=97.6 \Omega \end{array}$
$\begin{aligned} & \text { XXXR } \\ & (100 \text { to } 976 \Omega) \end{aligned}$	$100 \mathrm{R}=100 \Omega$
$\begin{aligned} & \text { XKXX } \\ & (1 \text { to } 9.76 \mathrm{~K} \Omega) \end{aligned}$	$\begin{aligned} 1 K & =1,000 \Omega \\ 9 K 76 & =9760 \Omega \end{aligned}$
$\begin{aligned} & \text { XM } \\ & (1 \mathrm{M} \Omega) \end{aligned}$	$1 M=1,000,000 \Omega$

PHYCOMP BRAND ordering codes

Both GLOBAL PART NUMBER (preferred) and I2NC (traditional) codes are acceptable to order Phycomp brand products.
GLOBAL PART NUMBER (PREFERRED)
For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2.
TCI 22 series is supplied and ordered by global part number only.

I2NC CODE

2350
(I)
XXX XXXXX
(2) (3) (4)

$\begin{aligned} & \text { TYPE/ } \\ & 2 \times 0402 \end{aligned}$	$\begin{aligned} & \text { START } \\ & \text { IN }^{(1)} \end{aligned}$	TOL. (\%)	RESISTANCE RANGE	PAPER / PE TAPE ON REEL (units) ${ }^{(2)}$		
				10,000	50,000	
ARV32I	2350	$\pm 5 \%$	\| to	M	$01311 \times x \times$	$01312 x \times x$
ARV322	2350	$\pm 1 \%$	10 to $1 \mathrm{M} \Omega$	$0132 x \times x \times$	$0133 x \times x \times$	
Jumper	2350	-	0Ω	01391001		

(I) The resistors have a 12 -digit ordering code starting with 2350.
(2) The subsequent 4 or 5 digits indicate the resistor tolerance and packaging.
(3) The remaining 4 or 3 digits represent the resistance value with the last digit indicating the multiplier as shown in the table of "Last digit of I2NC".
(4) "L" is optional symbol (Note).

Ordering example
The ordering code of a ARV32I resistor, value $1,000 \Omega$ with $\pm 5 \%$ tolerance, supplied in tape of 10,000 units per reel is: 23500131II02(L) or YCI22-JR-07IKL.

Last digit of I2NC Resistance decade ${ }^{(3)}$		Last digit
0.01 to 0.0976Ω		0
0.1 to 0.976Ω		7
1 to 9.76Ω		8
10 to 97.6Ω		9
100 to 976Ω		I
I to $9.76 \mathrm{~K} \Omega$		2
10 to $97.6 \mathrm{~K} \Omega$		3
100 to $976 \mathrm{~K} \Omega$		4
1 to $9.76 \mathrm{M} \Omega$		5
10 to 97.6 M Ω		6
Example:	0.02Ω	0200 or 200
	0.3Ω	3007 or 307
	1Ω	1008 or 108
	$33 \mathrm{~K} \Omega$	3303 or 333
	$10 \mathrm{M} \Omega$	1006 or 106

NOTE

I. All our RSMD products are RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I 2 NC can be added (both are on customer request)

MARKJNG
YCIO2

Fig. I
YCI 22
Fig.2 No marking
YCIO4
Fig. 3 No marking

No marking

No marking
$\underline{\underline{\mathrm{YCl}} 24 / 162 / 164 / 324}$

Fig. 4 Jumper $=0 \Omega$

ㄹㄴㅣ

E-24 series: 3 digits, 5%
First two digits for significant figure and 3 rd digit for number of zeros
Fig. 4-I Value=240K Ω

YC248

\square I-Digit marking
Fig. 5 Jumper $=0 \Omega$

란

E-24 series: 3 digits, 5\%
First two digits for significant figure and 3 rd digit for number of zeros
Fig. 5-I Value $=240 \mathrm{~K} \Omega$

$\underline{\underline{\text { YCI58T/358L/358T }}}$

2पा

Fig. 6 Value $=24 \Omega$

Fig. 6-1 Value $=240 \mathrm{~K} \Omega$

E-24 series: 3 digits
First two digits for significant figure and 3rd digit for number of zeros

TCI22

No marking

Fig. 7
TCl 24

No marking
Fig. 8

I-Digit marking
Fig. 9 Jumper $=0 \Omega$

E-24 series: 3 digits, 5%

First two digits for significant figure and 3 rd digit for number of zeros
Fig. 9-I Value $=240 \mathrm{~K} \Omega$
For further marking information, please refer to data sheet "Chip resistors marking".

CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy

OUTLINES

 coat, finally the two external terminations (matte tin on Nibarrier) are added as shown in Fig.9.

$\mathrm{R} 1=\mathrm{R} 2$
TC122

$\mathrm{R} 1=\mathrm{R} 2$

YC104/124/164/324 ${ }^{(1)}$

$\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=\mathrm{R} 4$

TC124/164

YC248

$\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=\mathrm{R} 4=\mathrm{R} 5=\mathrm{R} 6=\mathrm{R} 7=\mathrm{R} 8$

YC158

$\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=\mathrm{R} 4=\mathrm{R} 5=\mathrm{R} 6=\mathrm{R} 7=\mathrm{R} 8$

YC358 (T-Type)

$\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=\mathrm{R} 4=\mathrm{R} 5=\mathrm{R} 6=\mathrm{R} 7=\mathrm{R} \varepsilon$

Fig. II Equivalent circuit diagram
Note: I. YCI $02 /$ / 04 is flat type

```
For dimension, please refer to Table I
```



```
YC102_T
YC 122/162 \({ }^{(1)}\)
YC 104/124/164/3́ \(158 / 358 / 248^{1)}\)
```



```
TC 122
TC 124/164
```


Fig. 12 YC/TCI 22 series chip resistors dimension Note: (1) YCIO2/IO4 is flat type

DJMENSIONS

Table I

TYPE	$\mathrm{H} / \mathrm{H}_{1} / \mathrm{Hw}$	B	P	L	T	WI	W2
YCIO2	$\mathrm{H}: 0.25 \pm 0.10$	0.15 ± 0.10	0.55 ± 0.10	0.80 ± 0.10	0.35 ± 0.10	0.15 ± 0.10	0.60 ± 0.10
YCIO4	$\mathrm{H}: 0.20 \pm 0.10$	0.15 ± 0.05	0.40 ± 0.10	1.40 ± 0.10	0.35 ± 0.10	0.15 ± 0.10	0.60 ± 0.10
YCI22	$\begin{aligned} & H^{H}: 0.21+0.10 /-0.05 \\ & H_{w}: 0.35 \pm 0.10 \end{aligned}$	0.20 ± 0.10	0.67 ± 0.05	1.00 ± 0.10	0.30 ± 0.10	0.25 ± 0.10	1.00 ± 0.10
YCI24	$\begin{aligned} & \mathrm{H}: 0.40 \pm 0.15 \\ & \mathrm{H}_{\mathrm{l}}: 0.30 \pm 0.05 \\ & \hline \end{aligned}$	0.20 ± 0.15	0.50 ± 0.05	2.00 ± 0.10	0.45 ± 0.10	0.30 ± 0.15	1.00 ± 0.10
YCI62	$\begin{aligned} & H: 0.30 \pm 0.10 \\ & H_{W}: 0.65 \pm 0.15 \\ & \hline \end{aligned}$	0.30 ± 0.10	0.80 ± 0.05	1.60 ± 0.10	0.40 ± 0.10	0.30 ± 0.10	1.60 ± 0.10
YCI64	$\begin{aligned} & H: 0.65 \pm 0.05 \\ & H_{1}: 0.50 \pm 0.15 \end{aligned}$	0.30 ± 0.15	0.80 ± 0.05	3.20 ± 0.15	0.60 ± 0.10	0.30 ± 0.15	1.60 ± 0.15
YC248	$\begin{aligned} & H: 0.45 \pm 0.05 \\ & H_{1}: 0.30 \pm 0.05 \end{aligned}$	0.30 ± 0.15	0.50 ± 0.05	4.00 ± 0.20	0.45 ± 0.10	0.40 ± 0.15	1.60 ± 0.15
YC324	$\begin{aligned} & H: I .10 \pm 0.15 \\ & H_{1}: 0.90 \pm 0.15 \end{aligned}$	0.50 ± 0.20	1.27 ± 0.05	5.08 ± 0.20	0.60 ± 0.10	0.50 ± 0.15	3.20 ± 0.20
TCl22	$\mathrm{H}: 0.30 \pm 0.05$	0.25 ± 0.15	0.50 ± 0.05	1.00 ± 0.10	0.30 ± 0.10	0.25 ± 0.15	1.00 ± 0.10
TCl24	$\mathrm{H}: 0.30 \pm 0.10$	0.20 ± 0.10	0.50 ± 0.05	2.00 ± 0.10	0.40 ± 0.10	0.25 ± 0.10	1.00 ± 0.10
TCI64	$\mathrm{H}: 0.50 \pm 0.15$	0.30 ± 0.15	0.80 ± 0.05	3.20 ± 0.15	0.60 ± 0.10	0.30 ± 0.15	1.60 ± 0.15
YCI58T	$\begin{aligned} & H: 0.45 \pm 0.05 \\ & H_{1}: 0.32 \pm 0.05 \end{aligned}$	0.30 ± 0.15	0.64 ± 0.05	3.20 ± 0.20	0.60 ± 0.10	0.35 ± 0.15	1.60 ± 0.15
$\begin{aligned} & \text { YC358L } \\ & \text { YC358T } \end{aligned}$	$\begin{aligned} & H: I .10 \pm 0.15 \\ & H_{1}: 0.90 \pm 0.15 \end{aligned}$	0.50 ± 0.15	1.27 ± 0.05	6.40 ± 0.20	0.60 ± 0.10	0.50 ± 0.15	3.20 ± 0.20

ELEGTRJCAL CHARACTERISTJCS

Table 2

TYPE	$\begin{aligned} & \text { POWER } \\ & \text { P70 } \end{aligned}$	OPERATING TEMP. RANGE	MWV	RCOV	DWV	RESISTANC TOLER	E RANGE \& RANCE	T. C. R.	Jumper cr (un	
YCIO2	I/32W	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	15 V	30V	30 V	$\begin{array}{r} \text { E24 } \pm 5 \% \\ \text { E24/E96 } \pm 1 \% \\ \text { Jumper } \end{array}$	$\begin{aligned} & 10 \Omega \leq R \leq 1 M \Omega \\ & 10 \Omega \leq R \leq 1 M \Omega \\ & <0.05 \Omega \end{aligned}$	$\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Rated current Max. current	0.5 1.0
YCIO4	I/32W	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12.5 V	25V	25V	E24 $\pm 5 \%$ E24/E96 $\pm 1 \%$ Jumper	$\begin{aligned} & 10 \Omega \leq R \leq I M \Omega \\ & 10 \Omega \leq R \leq I M \Omega \\ & <0.05 \Omega \end{aligned}$		Rated current Max. current	0.5 1.0
YCI22	1/16W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	50V	I 00 V	I OOV	E24 $\pm 5 \%$ E24/E96 $\pm 1 \%$ Jumper	$\begin{aligned} & I \Omega \leq R \leq I M \Omega \\ & I \Omega \leq R \leq I M \Omega \\ & <0.05 \Omega \end{aligned}$	$\begin{array}{r} 1 \Omega \leq \mathrm{R} \leq \mathrm{I} 0 \Omega \\ \pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega<\mathrm{R} \leq \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated current Max. current	0.5 1.0
YCI24	1/16W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	25V	50V	IOOV	$\begin{array}{r} \text { E24 } \pm 5 \% \\ \text { E24/E96 } \pm 1 \% \\ \text { Jumper } \end{array}$	$\begin{aligned} & I \Omega \leq R \leq I M \Omega \\ & I \Omega \leq R \leq I M \Omega \\ & <0.05 \Omega \end{aligned}$		Rated current Max. current	1.0 2.0
YCI62	1/16W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	50V	I OOV	I OOV	$\begin{array}{r} \mathrm{E} 24 \pm 5 \% \\ \text { E/24/E9 } \pm 1 \% \\ \text { Jumper } \end{array}$	$\begin{aligned} & \mid \Omega \leq R \leq I M \Omega \\ & \mid \Omega \leq R \leq I M \Omega \\ & <0.05 \Omega \end{aligned}$		Rated current Max. current	1.0 2.0
YCI64	1/16W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	50V	IOOV	I OOV	$\begin{array}{r} \text { E24 } \pm 5 \% \\ \text { E24/E96 } \pm 1 \% \\ \text { Jumper } \end{array}$	$\begin{aligned} & \mid \Omega \leq R \leq I M \Omega \\ & \mid \Omega \leq R \leq I M \Omega \\ & <0.05 \Omega \end{aligned}$	$\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	Rated current Max. current	1.0 2.0
YC248	1/16W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	50V	100V	I OOV	$\begin{array}{r} \text { E24 } \pm 5 \% \\ \text { E24/E96 } \pm 1 \% \\ \text { Jumper } \end{array}$	$\begin{aligned} & 10 \Omega \leq R \leq I M \Omega \\ & 10 \Omega \leq R \leq I M \Omega \\ & <0.05 \Omega \end{aligned}$		Rated current Max. current	$\begin{array}{r} 2.0 \\ 10.0 \end{array}$
YC324	1/8W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	200V	500 V	500 V	$\begin{array}{r} \text { E24 } \pm 5 \% \\ \text { E24/E96 } \pm 1 \% \end{array}$	$\begin{aligned} & 10 \Omega \leq R \leq I M \Omega \\ & 10 \Omega \leq R \leq I M \Omega \end{aligned}$		---	---
TCl22	I/I6W	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	50V	I 00 V	I OOV	$\begin{array}{r} \text { E24 } \pm 5 \% \\ \text { E24/E96 } \pm 1 \% \\ \text { Jumper } \end{array}$	$\begin{aligned} & 10 \Omega \leq R \leq I M \Omega \\ & 10 \Omega \leq R \leq I M \Omega \\ & <0.05 \Omega \end{aligned}$		Rated current Max. current	1.0 1.5
TCl24	1/16W	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	50V	I 00 V	I OOV	$\begin{array}{r} \text { E24 } \pm 5 \% \\ \text { E24/E96 } \pm 1 \% \\ \text { Jumper } \end{array}$	$\begin{aligned} & 10 \Omega \leq R \leq 1 M \Omega \\ & 10 \Omega \leq R \leq 1 M \Omega \\ & <0.05 \Omega \end{aligned}$		Rated current Max. current	1.0 1.5
TCI64	1/16W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	50V	I 00 V	I OOV	$\begin{array}{r} \text { E24 } \pm 5 \% \\ \text { E24/E96 } \pm 1 \% \\ \text { Jumper } \end{array}$	$\begin{aligned} & 10 \Omega \leq R \leq I M \Omega \\ & 10 \Omega \leq R \leq I M \Omega \\ & <0.05 \Omega \end{aligned}$		Rated current Max. current	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$
YCI58T	1/16W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	25V	50 V	50V	E24 $\pm 5 \%$	$\begin{aligned} & 10 \Omega \leq R \leq \\ & 100 \mathrm{~K} \Omega \end{aligned}$		---	---
$\begin{aligned} & \text { YC358L } \\ & \text { YC358T } \end{aligned}$	1/16W	$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	50V	I 00 V	I OOV	E24 $\pm 5 \%$	$\begin{aligned} & 10 \Omega \leq R \leq \\ & 330 \mathrm{~K} \Omega \end{aligned}$		---	---

POOTPRINT AND SOLDERNNG PROFILES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY
Table 3 Packing style and packaging quantity

| PACKING STYLE | PACKING STYLE | YC102/ | YC/TC | YC/TC | YC162 | YC/TC | YC248 | YC324 | YC158T |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | YC358L

NOTE

I. For tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTJION

OPERATING TEMPERATURE RANGE

YCIO2/I04, TCI22/I24 Range:
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Fig.13)
YCI22/I24/I62/I64/248/324/I58T/358L/358T, TCI64 Range:
$-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$ (Fig. 14)

POWER RATING

Each type rated power at $70^{\circ} \mathrm{C}$
YCI02/I04 $=1 / 32 \mathrm{~W}$
YCI $22 / / 24 / 162 / 164 / 248 / 158 \mathrm{~T} / 358 \mathrm{~L} / 358 \mathrm{~T}=1 / 16 \mathrm{~W}$
YC324 = $1 / 8 \mathrm{~W}$
TCI22/I24/I64 = I/I6 W

Rated voltage

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:
$\mathrm{V}=\sqrt{(\mathrm{P} \times \mathrm{R})}$
or max. working voltage whichever is less
Where
$V=$ Continuous rated $D C$ or AC (rms) working voltage (V)
$\mathrm{P}=$ Rated power (W)
$R=$ Resistance value (Ω)

Fig. I3 Maximum dissipation (P) in percentage of rated power as a function of the operating ambient temperature ($\mathrm{T}_{\mathrm{amb}}$)

Fig. I4 Maximum dissipation (P) in percentage of rated power as a function of the operating ambient temperature ($\mathrm{T}_{\mathrm{amb}}$)

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Life/	MIL-STD-202-method 108	1,000 hours at $70 \pm 5^{\circ} \mathrm{C}$ applied RCWV	$\pm(2 \%+0.05 \Omega)$
Operational Life/	IEC 60I $15-14.25 .1$	1.5 hours on, 0.5 hour off, still air required	$<100 \mathrm{~m} \Omega$ for Jumper
Endurance	JIS C 5202-7.10		

High Temperature	MIL-STD-202-method I08	I,000 hours at maximum operating	$\pm(\mid \%+0.05 \Omega)$
Exposure/	IEC 60I I5-I 4.25 .3	temperature depending on specification,	$<50 \mathrm{~m} \Omega$ for Jumper
Endurance at	JIS C 5202-7.1I	unpowered	
Upper Category		No direct impingement of forced air to the	
Temperature		parts	
	Tolerances: $125 \pm 3^{\circ} \mathrm{C}$		

Moisture	MIL-STD-202-method 106	Each temperature / humidity cycle is defined at	$\pm(2 \%+0.05 \Omega)$	
Resistance	IEC 60115-I 4.24.2	8 hours (method I06F), 3 cycles / 24 hours for 10d with $25^{\circ} \mathrm{C} / 65^{\circ} \mathrm{C} 95 \%$ R.H, without steps 7 a \& 7b, unpowered	$<100 \mathrm{~m} \Omega$ for Jumper	
		Parts mounted on test-boards, without condensation on parts		
		Measurement at 24 ± 2 hours after test conclusion		
Thermal Shock	MIL-STD-202-method 107	$-55 /+125^{\circ} \mathrm{C}$	$\pm(1 \%+0.05 \Omega)$	
		Note: Number of cycles required is 300 . Devices mounted	$<50 \mathrm{~m} \Omega$ for Jumper	
		Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air - Air		
Short Time Overload	MIL-R-55342-para 4.7.5	2.5 times RCW or maximum overload	$\pm(2 \%+0.05 \Omega)$	
	IEC60\| 15-1 4.13	voltage whichever is less for 5 sec at room	$<50 \mathrm{~m} \Omega$ for Jumper	
		temperature	No visible damage	
Board Flex/ Bending	IEC60\|	5-1 4.33	Device mounted on PCB test board as	$\pm(1 \%+0.05 \Omega)$
		described, only I board bending required	$<50 \mathrm{~m} \Omega$ for Jumper	
		3 mm bending	No visible damage	
		Bending time: 60 ± 5 seconds		
		Ohmic value checked during bending		

\qquad

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	J-STD-002 test	Electrical Test not required Magnification 50X SMD conditions: $\left.\right\|^{\text {st }}$ step: method B , aging 4 hours at $155^{\circ} \mathrm{C}$ dry heat $2^{\text {nd }}$ step: leadfree solder bath at $245 \pm 3^{\circ} \mathrm{C}$ Dipping time: 3 ± 0.5 seconds	Well tinned ($\geq 95 \%$ covered) No visible damage
- Leaching	J-STD-002 test	Leadfree solder, $260^{\circ} \mathrm{C}, 30$ seconds immersion time	No visible damage
- Resistance to Soldering Heat	MIL-STD-202-method 210	Condition B, no pre-heat of samples Leadfree solder, $260^{\circ} \mathrm{C}, 10$ seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	$\pm(\mid \%+0.05 \Omega)$ $<50 \mathrm{~m} \Omega$ for Jumper No visible damage
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202-Method I03	I,000 hours; $85^{\circ} \mathrm{C} / 85 \%$ RH 10\% of operating power Measurement at 24 ± 4 hours after test conclusion.	$\pm(5.0 \%+0.05 \Omega)$

\qquad

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 9	Feb.19, 2019	-	- Update H dimension for YCI24
Version 8	Dec. 24. 2018	-	- Update AEC-Q200 qualified
Version 7	Aug. 22, 2017	-	- Correct the typo for YCI 58T/358L/358T, Marking, "240" is 24ohm
Version 6	Jun. 1, 2017	-	- Update ordering information for networks YCI58T/YC358L/YC358T
Version 5	Feb. 14, 2017	-	- Update YCI58 and 358 part number to YCI58T, YC358L and YC358T
Version 4	Dec. 22, 2016	-	- Delete YCIO2 default code L type
Version 3	Apr. 29, 2016	-	- Update YC series and TCI 64 dimension
Version 2	Dec. 11, 2015	-	- Update Operating Temperature
Version I	Feb. 04, 2015	-	- Update YCIO2 to flat type
Version 0	Nov. 14, 2014	-	- First issue of this specification

" YAGEO reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Varistors category:
Click to view products by Yageo manufacturer:
Other Similar products are found below :
820443211E MLV0603E30403T MOV05131AIA MOV07231AQA MOV18131CZA R71ZOV151HC D58ZOV500RA01T1 B72214S110K151 B72214S251K151 B72260B102K1 B72280B271K1 B72500E8250L60 B72530E1140S272 B72540E250K62 B72650M0151K093 B72660M0271K093 NTE1V020 NTE1V130 NTE2V010 NTE2V130 ROV20-220M-S ROV20H201K 25FN511K S10K11G5S5 ERZ-C07DK221U ERZ-C14DK361U ERZ-C20DK221U 207869-1 TMOV25SP625E TND10V-471KB00AAA0 $\underline{\text { B72210S271K111 B72214S200K551 B72280B112K1 B72280B381K1 B72540E 350K 62 B72590D360A60 B72670M1140K72 }}$ MOV07251ARA MOV10131EDA MOV10151EFA MOV14151CWA MOV20251DFA TVZ18EC271KBS TVZ20EB911KBS TVZ25D201KBS TVZ25D241KBS VZ07D220KBS Z420LA20A ROV20H220M-S VZ40D241KQ-N

