

DATA SHEET

ARRAY CHIP RESISTORS

YC/TC 5%, 1% sizes

YC:102/104/122/124/162/164/248/324/158T/358L/358T TC: 122/124/164

RoHS compliant

<u>SCOPE</u>

This specification describes YC (convex, flat) and TC (concave)

series chip resistor arrays with leadfree terminations made by thick film process.

APPLICATIONS

- Terminal for SDRAM and DDRAM
- Computer applications: laptop computer, desktop computer
- Consume electronic equipments: PDAs, PNDs
- Mobile phone, telecom...

<u>FEATURES</u>

- AEC-Q200 qualified
- More efficient in pick & place application
- Low assembly costs
- RoHS compliant
- Products with lead free terminations meet RoHS requirements
- Pb-glass contained in electrodes
- Resistor element and glass are exempted by RoHS
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production
- Halogen Free Epoxy

ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value. YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERSRED)

YC <u>XXXX X X X X XX XXXX L/T</u>

TC (1) (2) (3) (4) (5) (6) (7)	(8)
---------------------------------------	-----

(I) SIZE

YC:102/104/122/124/162/164/248/324/158T/358L/358T TC: 122/124/164

(2) ARRAYS OR NETWORKS

Array YC102/104/122/124/162/164/248/324: -Network YC158T/YC358L/YC358T: NA

(3) TOLERANCE

 $F = \pm 1\%$

 $J = \pm 5\%$ (for Jumper ordering, use code of J)

(4) PACKAGING TYPE

R = Paper taping reel K = Embossed plastic tape reel

(5) TEMPERATURE COEFFICIENT OF RESISTANCE

– = Base on spec

(6) TAPING REEL

- 07 = 7 inch dia. Reel
- 13 = 13 inch dia. Reel

(7) RESISTANCE VALUE

There are 2~4 digits indicated the resistor value. Letter R/K/M is decimal point. Detailed resistance rules show in table of "Resistance rule of global part number".

(8) DEFAULT CODE

Letter L is the system default code for ordering only. $^{(Note)}$ Letter T is the only default code for YCI02.

ORDERING EXAMPLE

The ordering code of a YC122 convex chip resistor array, value 1,000 Ω with ±5% tolerance, supplied in 7-inch tape reel is: YC122-JR-071KL.

YCI58T network, value $100,000\Omega$ with 5% tolerance, supplied in 7-inch tape reel is: YCI58T|R-07100KL

NOTE

- All our RSMD products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

Resistance rule o number Resistance code rule	
0R	0R = Jumper
XRXX (I to 9.76 Ω)	R = Ω R5 = .5 Ω 9R76 = 9.76 Ω
XXRX (10 to 97.6 Ω)	I0R = I0 Ω 97R6 = 97.6 Ω
XXXR (100 to 976 Ω)	100R = 100 Ω
XKXX (1 to 9.76 K Ω)	ικ = 1,000 Ω 9κ76 = 9760 Ω
ΧΜ (Ι ΜΩ)	IM = 1,000,000 Ω

Last digit

3

4

5

6

0200 or 200

3007 or 307

1008 or 108

3303 or 333

1006 or 106

100 to 976 KΩ

I to 9.76 MΩ

10 to 97.6 MΩ

Example:

0.02 Ω

0.3 Ω

ΙΩ

33 KΩ

10 MΩ

=

=

=

=

=

PHYCOMP BRAND ordering codes

Both GLOBAL PART NUMBER (preferred) and I2NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2. TC122 series is supplied and ordered by global part number only.

12NC CODE

235 (I)	0	XXX XXXXX L (2) (3) (4)			Last digit of 12NC Resistance decade ⁽³⁾	
TYPE/	START	TOL.	RESISTANCE	PAPER / PE TAPE C	DN REEL (units) ⁽²⁾	0.01 to 0.0976 Ω
2×0402	IN ⁽¹⁾	(%)	RANGE	10,000	50,000	0.1 to 0.976 Ω
ARV321	2350	±5%	l to l MΩ	0 3 xxx	013 12xxx	l to 9.76 Ω
ARV322	2350	±1%	10 to 1 MΩ	013 2xxxx	013 3xxxx	10 to 97.6 Ω
Jumper	2350	-	0 Ω	01391001	-	100 to 976 Ω
(I) The	resistor	s have	a 12-digit orde	ering code starting	with 2350.	l to 9.76 KΩ
. ,			+			10 to 97.6 KΩ

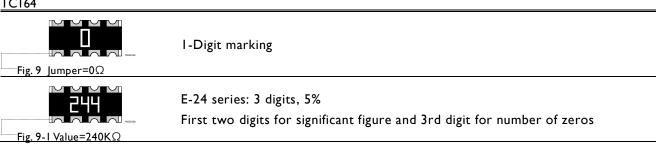
- (2) The subsequent 4 or 5 digits indicate the resistor tolerance and packaging.
- (3) The remaining 4 or 3 digits represent the resistance value with the last digit indicating the multiplier as shown in the table of "Last digit of I2NC".
- (4) "L" is optional symbol (Note).

ORDERING EXAMPLE

The ordering code of a ARV321 resistor, value 1,000 Ω with ±5% tolerance, supplied in tape of 10,000 units per reel is: 235001311102(L) or YCI22-JR-07IKL.

NOTE

- I. All our RSMD products are RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

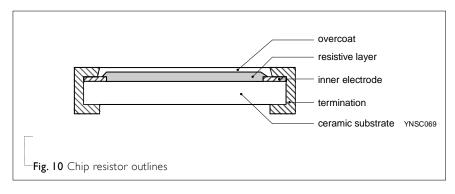

-www.yageo.com

<u>MARKING</u>

Feb. 21, 2019 V.9

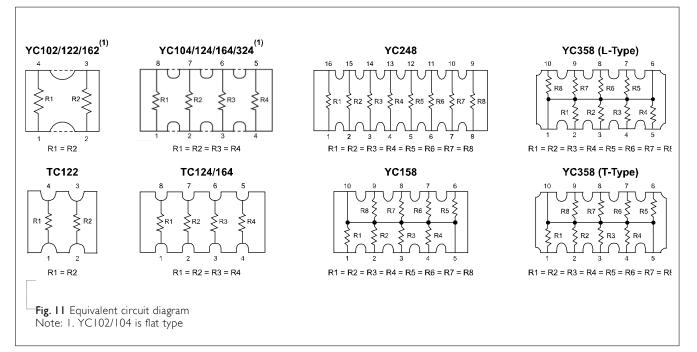
YC102		
Fig. I	No marking	
YC122		
Fig. 2	No marking	
YC104		
Fig. 3	No marking	
<u>YC124 / 162 / 164 / 324</u>		
Γ ig. 4 Jumper=0Ω	I-Digit marking	
Γig. 4-1 Value=240KΩ	E-24 series: 3 digits, 5% First two digits for significant figure	e and 3rd digit for number of zeros
YC248		
Fig. 5 Jumper=0Ω	I-Digit marking	
244 Fig. 5-1 Value=240KΩ	E-24 series: 3 digits, 5% First two digits for significant figure	e and 3rd digit for number of zeros
YC158T/358L/358T		
Γίg. 6 Value=24Ω	ΕΥΗ Fig. 6-1 Value=240KΩ	E-24 series: 3 digits First two digits for significant figure and 3rd digit for number of zeros
TC122		
Fig. 7	No marking	
<u>TCI24</u>		
Fig. 8	No marking	

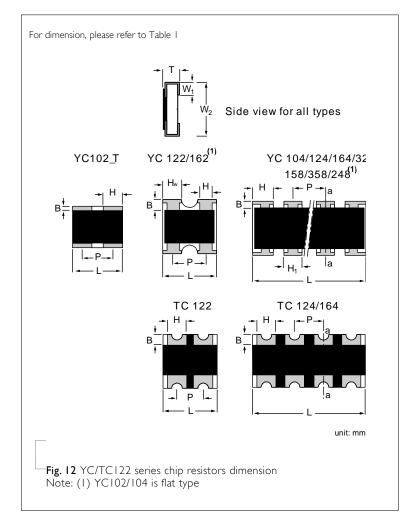
TCI64



For further marking information, please refer to data sheet "Chip resistors marking".

CONSTRUCTION


The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (matte tin on Nibarrier) are added as shown in Fig.9.


OUTLINES

SCHEMATIC

DIMENSIONS

Table I

TYPE	H / H _I / H _W	В	Р	L	Т	WI	W2
YC102	H:0.25 ± 0.10	0.15 ±0.10	0.55 ±0.10	0.80 ±0.10	0.35 ±0.10	0.15 ±0.10	0.60 ±0.10
YC104	H:0.20 ± 0.10	0.15 ±0.05	0.40 ±0.10	1.40 ±0.10	0.35 ±0.10	0.15 ±0.10	0.60 ±0.10
YC122	H : 0.21+0.10 / -0.05 H _w : 0.35 ±0.10	0.20 ±0.10	0.67 ±0.05	1.00 ±0.10	0.30 ±0.10	0.25 ±0.10	1.00 ±0.10
YCI24	H: 0.40 ± 0.15 H ₁ : 0.30 ± 0.05	0.20 ±0.15	0.50 ±0.05	2.00 ±0.10	0.45 ±0.10	0.30 ± 0.15	1.00 ±0.10
YC162	H : 0.30 ±0.10 H _W : 0.65 ±0.15	0.30 ±0.10	0.80 ±0.05	1.60 ± 0.10	0.40 ±0.10	0.30 ±0.10	1.60 ±0.10
YC164	H : 0.65 ± 0.05 H ₁ : 0.50 ± 0.15	0.30 ±0.15	0.80 ±0.05	3.20 ±0.15	0.60 ±0.10	0.30 ±0.15	1.60 ± 0.15
YC248	H : 0.45 ± 0.05 H ₁ : 0.30 ± 0.05	0.30 ±0.15	0.50 ±0.05	4.00 ±0.20	0.45 ±0.10	0.40 ±0.15	1.60 ± 0.15
YC324	H : 1.10 ± 0.15 H ₁ : 0.90 ± 0.15	0.50 ± 0.20	1.27 ±0.05	5.08 ±0.20	0.60 ±0.10	0.50 ± 0.15	3.20 ±0.20
TCI22	H : 0.30 ±0.05	0.25 ±0.15	0.50 ±0.05	1.00 ±0.10	0.30 ±0.10	0.25 ±0.15	1.00 ±0.10
TCI24	H:0.30 ±0.10	0.20 ±0.10	0.50 ±0.05	2.00 ±0.10	0.40 ±0.10	0.25 ±0.10	1.00 ±0.10
TCI64	H:0.50 ±0.15	0.30 ±0.15	0.80 ±0.05	3.20 ±0.15	0.60 ±0.10	0.30 ±0.15	1.60 ± 0.15
YCI58T	H : 0.45 ± 0.05 H ₁ : 0.32± 0.05	0.30 ±0.15	0.64 ±0.05	3.20 ±0.20	0.60 ±0.10	0.35 ± 0.15	1.60 ± 0.15
YC358L YC358T	H : 1.10 ± 0.15 H ₁ : 0.90 ± 0.15	0.50 ±0.15	1.27 ± 0.05	6.40 ±0.20	0.60 ±0.10	0.50 ± 0.15	3.20 ±0.20

ELECTRICAL CHARACTERISTICS

Table 2	2		_						
TYPE	POWER P ₇₀	OPERATING TEMP. RANGE	MWV	RCOV	DWV	RESISTANCE RANGE & TOLERANCE	T. C. R.	Jumper crite (unit:	
YC102	1/32W	-55°C to +125°C	15V	30V	30V	E24 ±5% 10Ω≤ R ≤ 1ΜΩ E24/E96 ±1% 10Ω≤ R ≤ 1ΜΩ Jumper < 0.05Ω	2	Rated current Max. current	0.5 1.0
YC104	1/32W	-55°C to +125°C	12.5V	25V	25V	$\begin{array}{l} \text{E24} \pm 5\% \text{I0}\Omega \leq \text{R} \leq \text{IM}\\ \text{E24/E96} \pm 1\% \text{I0}\Omega \leq \text{R} \leq \text{IM}\\ \text{Jumper} < 0.05\Omega \end{array}$		Rated current Max. current	0.5 1.0
YCI22	1/16W	-55°C to +155°C	50V	100V	100V	E24 ±5% IΩ ≤ R ≤ IMΩ E24/E96 ±1% IΩ ≤ R ≤ IMΩ Jumper < 0.05Ω		Rated current Max. current	0.5 1.0
YCI24	1/16W	-55°C to +155°C	25V	50V	100V	E24 ±5% IΩ ≤ R ≤ IMΩ E24/E96 ±1% IΩ ≤ R ≤ IMΩ Jumper < 0.05Ω	+ 150 ppm/2	Max. current	1.0 2.0
YC162	1/16W	-55°C to +155°C	50V	100V	100V	$\begin{array}{l} \text{E24 } \pm 5\% \Omega \leq \text{R} \leq \text{IM}\Omega\\ \text{E/24/E96 } \pm 1\% \Omega \leq \text{R} \leq \text{IM}\Omega\\ \text{Jumper} < 0.05\Omega \end{array}$		Rated current Max. current	1.0 2.0
YCI64	1/16W	-55°C to +155°C	50V	100V	100V	E24 ±5% ΙΩ ≤ R ≤ IMΩ E24/E96 ±1% ΙΩ ≤ R ≤ IMΩ Jumper < 0.05Ω		Rated current Max. current	1.0 2.0
YC248	1/16W	-55°C to +155°C	50V	100V	100V	$\begin{array}{l} \text{E24 } \pm 5\% \text{IO}\Omega \leq \text{R} \leq \text{IM}, \\ \text{E24/E96 } \pm 1\% \text{IO}\Omega \leq \text{R} \leq \text{IM}, \\ \text{Jumper} < 0.05\Omega \end{array}$		Rated current Max. current	2.0 10.0
YC324	1/8W	-55°C to +155°C	200V	500V	500V	$\begin{array}{l} E24 \pm 5\% I0\Omega \leq R \leq IM;\\ E24/E96 \pm 1\% I0\Omega \leq R \leq IM; \end{array}$			
TCI22	1/16W	-55°C to +125°C	50V	100V	100V	$\begin{array}{l} \text{E24} \pm 5\% \text{I0} \Omega \leq \text{R} \leq \text{IM} \\ \text{E24/E96} \pm \text{I}\% \text{I0} \Omega \leq \text{R} \leq \text{IM} \\ \text{Jumper} < 0.05 \Omega \end{array}$		Rated current Max. current	1.0 1.5
TCI24	1/16W	-55°C to +125°C	50V	100V	100V	$\begin{array}{l} \text{E24} \pm 5\% \text{IO}\Omega \leq \text{R} \leq \text{IM}, \\ \text{E24/E96} \pm 1\% \text{IO}\Omega \leq \text{R} \leq \text{IM}, \\ \text{Jumper} < 0.05\Omega \end{array}$	2	Rated current Max. current	1.0 1.5
TCI64	1/16W	-55°C to +155°C	50V	100V	100V	$\begin{array}{l} \text{E24} \pm 5\% \text{I0}\Omega \leq \text{R} \leq \text{IM}, \\ \text{E24/E96} \pm 1\% \text{I0}\Omega \leq \text{R} \leq \text{IM}, \\ \text{Jumper} < 0.05\Omega \end{array}$		Rated current Max. current	1.0 2.0
YCI58T	1/16W	-55°C to +155°C	25V	50V	50V	E24 ±5% 10Ω ≤ R ≤ 100KΩ	_		
YC358L YC358T	1/16W	-55°C to +155°C	50V	100V	100V	E24 ±5% 10Ω≤ R ≤ 330KΩ	_		

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style	and packaging quanti	ty								
PACKING STYLE	PACKING STYLE	YC102/ 104	YC/TC 122	YC/TC 124	YC162	YC/TC 164	YC248	YC324	YC158T	YC358L YC358T
Paper taping reel (R)	7" (178mm)	10,000	10,000	10,000	5,000	5,000	5,000		5,000	
	13" (254mm)	50,000	50,000	40,000		20,000			20,000	
Embossed taping reel (K) 7" (178mm)						4,000	4,000		4,000

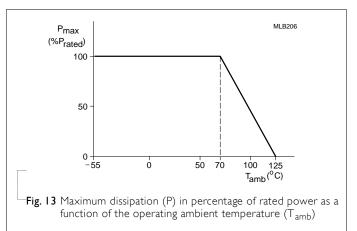
ΝΟΤΕ

1. For tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

YC102/104, TC122/124 Range:


-55°C to +125°C (Fig.13)

YC122/124/162/164/248/324/158T/358L/358T, TC164 Range:

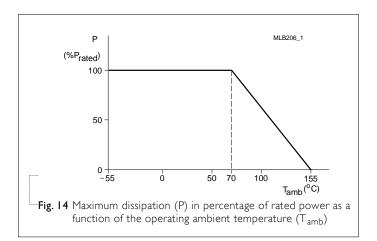
-55°C to +155°C(Fig.14)

POWER RATING

Each type rated power at 70°C YC102/104 = 1/32 W YC122/124/162/164/248/158T/358L/358T = 1/16 W YC324 = 1/8 W TC122/124/164 = 1/16 W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$V = \sqrt{(P \times R)}$

or max. working voltage whichever is less Where

V=Continuous rated DC or AC (rms) working voltage (V)

P=Rated power (W)

R=Resistance value (Ω)

TESTS AND REQUIREMENTS

 Table 4
 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Life/	MIL-STD-202-method 108	1,000 hours at 70±5 °C applied RCVVV	±(2%+0.05 Ω)
Operational Life/ Endurance	IEC 60115-1 4.25.1	1.5 hours on, 0.5 hour off, still air required	<100 m Ω for Jumper
Endurance	JIS C 5202-7.10		
High Temperature	MIL-STD-202-method 108	I,000 hours at maximum operating	±(1%+0.05 Ω)
Exposure/ Endurance at	IEC 60115-1 4.25.3 JIS C 5202-7.11	temperature depending on specification, unpowered	$<\!50~{ m m}\Omega$ for Jumper
Upper Category Temperature		No direct impingement of forced air to the parts	
		Tolerances: 125±3 °C	
Moisture	MIL-STD-202-method 106	Each temperature / humidity cycle is defined at	
Resistance	IEC 60115-1 4.24.2	8 hours (method 106F), 3 cycles / 24 hours for 10d with 25 °C / 65 °C 95% R.H, without	\sim <100 m Ω for Jumper
		steps 7a & 7b, unpowered	
		Parts mounted on test-boards, without	
		condensation on parts	
		Measurement at 24±2 hours after test conclusion	
Thermal Shock	MIL-STD-202-method 107	-55/+125 °C	±(1%+0.05 Ω)
		Note: Number of cycles required is 300. Devices mounted	<50 m Ω for Jumper
		Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	
Short Time	MIL-R-55342-para 4.7.5	2.5 times RCWV or maximum overload	±(2%+0.05 Ω)
Overload	IEC60115-14.13	voltage whichever is less for 5 sec at room	$<\!$ 50 m Ω for Jumper
		temperature	No visible damage
Board Flex/	IEC60115-14.33	Device mounted on PCB test board as	±(1%+0.05 Ω)
Bending		described, only I board bending required	<50 m Ω for Jumper
		3 mm bending	No visible damage
		Bending time: 60±5 seconds Ohmic value checked during bending	

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS		
Solderability - Wetting	J-STD-002 test	Electrical Test not required Magnification 50X SMD conditions: I st step: method B, aging 4 hours at 155 °C dry heat 2 nd step: leadfree solder bath at 245±3 °C Dipping time: 3±0.5 seconds	Well tinned (≥95% covered) No visible damage		
- Leaching	J-STD-002 test	Leadfree solder, 260 °C, 30 seconds immersion time	No visible damage		
- Resistance to Soldering Heat	MIL-STD-202-method 210	Condition B, no pre-heat of samples Leadfree solder, 260 °C, 10 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	\pm (1%+0.05 Ω) <50 mΩ for Jumper No visible damage		
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202-Method 103	1,000 hours; 85 °C / 85% RH 10% of operating power Measurement at 24± 4 hours after test conclusion.	± (5.0%+0.05 Ω)		

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 9	Feb.19, 2019	-	- Update H dimension for YC124
Version 8	Dec. 24. 2018	-	- Update AEC-Q200 qualified
Version 7	Aug. 22, 2017	-	- Correct the typo for YCI 58T/358L/358T, Marking, "240" is 240hm
Version 6	Jun. I, 2017	-	- Update ordering information for networks YCI58T/YC358L/YC358T
Version 5	Feb. 14, 2017	-	- Update YC158 and 358 part number to YC158T , YC358L and YC358T
Version 4	Dec. 22, 2016	-	- Delete YC102 default code L type
Version 3	Apr. 29, 2016	-	- Update YC series and TC164 dimension
Version 2	Dec. 11, 2015	-	- Update Operating Temperature
Version I	Feb. 04, 2015	-	- Update YCI02 to flat type
Version 0	Nov. 14, 2014	-	- First issue of this specification

"YAGEO reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resistor Networks & Arrays category:

Click to view products by Yageo manufacturer:

Other Similar products are found below :

CSC06A0122K0GEJ CSC08A01470KGEK M8340105K1002FGD03 M8340105M1202GGD03 M8340105M4700JGD03 M8340107K2002GCD03 M8340108K1001FCD03 M8340108K3240FGD03 M8340108K4991FGD03 M8340108K6202GGD03 M8340109MA010GHD03 744C083101JTR EXB-U18240JX 744C083270JTR 745C102472JP 745X101103JP MDP1603100KGE04 770101223 MNR04M0APJ471 MNR14E0APJ100 MNR18E0APJ102 MNR18E0APJ680 ACAS06S0830339P100 ACAS06S0830343P100 ACAS06S0830344P100 RAVF164DJT68K0 RM2012A-102/104-PBVW10 RM2012A-102503-PBVW10 RM2012A-502104-PBVW10 NRSN04I4J220TRF NRSN06I4J330TRF NRSNA4I4J330TRF 8B472TR4 ACAS06S0830341P100 ACAS06S0830342P100 ACAS06S0830345P100 EXB-18N390JX EXB-V4N100JV CSC09A014K70JEK M8340105K1502GGD03 M8340105K8251FGD03 M8340105M1001JCD03 M8340105M1002GCD03 M8340106K4701GGD03 M8340107K1004GGD03 M8340108K1000FGD03 M8340108K1000GGD03 M8340108K1002GGD03 M8340108K1202GGD03 M8340108K2001FCD03