

1101

ARRAY CHIP RESISTORS

YC/TC 5%, 1% sizes YC:102/104/122/124/162/164/248/324/158/358 TC: 122/124/164

RoHS compliant

Chip Resistor Surface Mount YC/TC SERIES 102 to 358

<u>SCOPE</u>

This specification describes YC (convex) and TC (concave) series chip resistor arrays with lead-free terminations made by thick film process.

APPLICATIONS

- Terminal for SDRAM and DDRAM
- Computer applications: laptop computer, desktop computer
- Consume electronic equipments: PDAs, PNDs
- Mobile phone, telecom...

FEATURES

- More efficient in pick & place application
- Low assembly costs
- RoHS compliant
 - Products with lead free terminations meet RoHS requirements
 - Pb-glass contained in electrodes
 - Resistor element and glass are exempted by RoHS
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production

ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code GLOBAL PART NUMBER (PREFERRED)

	<u> </u>	<u>X</u>	<u>X</u>	<u>X</u>	<u>XX</u>	<u>XXXX</u>	L	
TC (I)		(2)	(3)	(4)	(5)	(6)	(7)	

(I) SIZE

YC:102/104/122/124/162/164/248/324/158/358 TC: 122/124/164

(2) TOLERANCE

 $F = \pm 1\%$

 $J = \pm 5\%$ (for Jumper ordering, use code of J)

(3) PACKAGING TYPE

R = Paper taping reel K = Embossed plastic tape reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

– = Base on spec

(5) TAPING REEL

07 = 7 inch dia. Reel

13 = 13 inch dia. Reel

(6) RESISTANCE VALUE

There are 2~4 digits indicated the resistor value. Letter R/K/M is decimal point. Detailed resistance rules show in table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is the system default code for ordering only. $^{\left(\text{Note}\right) }$

Resistance rule of global part number Resistance code rule Example

Resistance code rule	Example
OR	0R = Jumper
VDVV	$ R = \Omega $
XRXX	irs = 1.5 Ω
(1 to 9.76 Ω)	9R76 = 9.76 Ω
XXRX	$10R = 10 \Omega$
(10 to 97.6 Ω)	97R6 = 97.6 Ω
XXXR	
(100 to 976 Ω)	$100R = 100 \Omega$
XKXX	IK = 1,000 Ω
(Ι to 9.76 K Ω)	9K76 = 9760 Ω
XM	$IM = I,000,000 \Omega$
(Ι ΜΩ)	

ORDERING EXAMPLE

The ordering code of a YC122 convex chip resistor array, value 1,000 Ω with ±5% tolerance, supplied in 7-inch tape reel is: YC122-JR-071KL.

NOTE

- All our RSMD products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

PHYCOMP BRAND ordering codes

Both GLOBAL PART NUMBER (preferred) and 12NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2. TC122 series is supplied and ordered by global part number only.

12NC CODE

235 (I)		(2) (3) (4)					git of 12N0 decade ⁽³⁾		Last digit	
TYPE/	START	TOL.	RESISTANCE	PAPER / PE TAPE (ON REEL (units) ⁽²⁾	0.01 to 0.0)976 Ω		0	
2×0402	IN ⁽¹⁾	(%)	RANGE	10,000	50,000	0.1 to 0.97	76 Ω		7	
ARV321	2350	±5%	l to l MΩ	0 3 xxx	013 12xxx	l to 9.76 (Ω		8	
ARV322	2350	±1%	10 to 1 MΩ	013 2xxxx	013 3xxxx	10 to 97.6			9	
Jumper	2350	-	0 Ω	01391001	-	100 to 976	5Ω			
(1) The	naciota	a have	ما کا منتخب مسط	aving and a starting	with 2250	l to 9.76 l	<Ω		2	
(1) The	resistor	's nave	e a 12-digit ord	ering code starting	with 2350.	10 to 97.6	ΚΩ		3	
· ·	subsequ kaging.	uent 4	or 5 digits indi	cate the resistor to	lerance and	100 to 976	6 ΚΩ		4	
						l to 9.76 l	MΩ		5	
. ,		•	• .	esent the resistance as shown in the tal		10 to 97.6	MΩ		6	
"Las	st digit o	f I2N	C".			Example:	0.02 Ω	=	0200 or 200	
(4) "L"	is optior	nal syn	nbol ^(Note) .				0.3 Ω	=	3007 or 307	
ORDER	ING EXA	MPLE					ΙΩ	=	1008 or 108	
The or	dering co	ode of	a ARV321 resi	stor, value 1,000Ω	with ±5%		33 KΩ	=	3303 or 333	
	ce, supp 22-JR-07		tape of 10,000	units per reel is: 2	35001311102(L)		10 MΩ	=	1006 or 106	

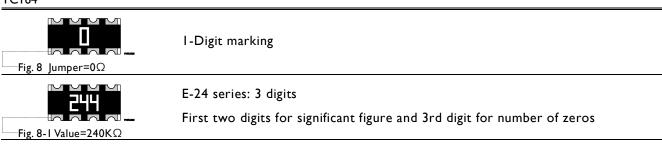
ΝΟΤΕ

- I. All our RSMD products are RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART $\$

NUMBER / I2NC can be added (both are on customer request)

YAGEO	Phicomp

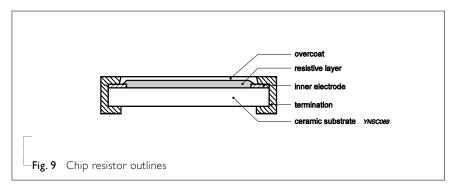
Chip Resistor Surface Mount YC/TC SERIES 102 to 358


MARKING

MARKING					
YC102/122					
Fig. I	No marking				
YC104					
Fig. 2	No marking				
YC124/164/324					
Γ ig. 3 Jumper=0Ω	I-Digit marking				
	E-24 series: 3 digits				
	First two digits for significant figure and 3rd digit for number of zeros				
YC248					
D Fig. 4 Jumper=0Ω	I-Digit marking				
	E-24 series: 3 digits				
Γί β. 4-1 Value=240ΚΩ	First two digits for significant	figure and 3rd digit for number of zeros			
YCI58/358					
		E-24 series: 3 digits			
Fig. 5 Value=24KΩ	Fig. 5-1 Value=240KΩ	First two digits for significant figure and 3rd digit for number of zeros			
TCI22					
Fig. 6	No marking				
TC124					
Fig. 7	No marking				

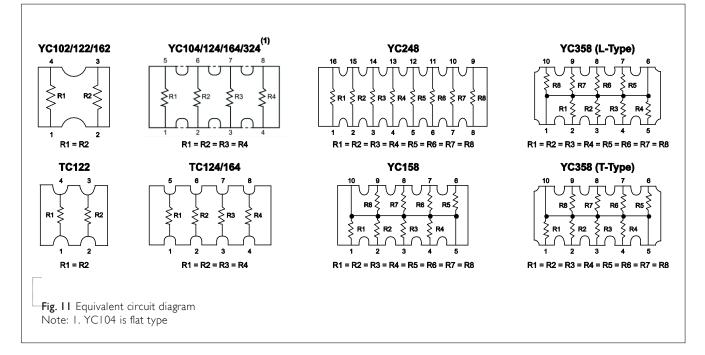
Chip Resistor Surface Mount YC/TC SERIES 102 to 358

TC164



For further marking information, please refer to data sheet "Chip resistors marking".

CONSTRUCTION


The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (matte tin on Nibarrier) are added as shown in Fig.9.

OUTLINES

SCHEMATIC

 Chip Resistor Surface Mount
 YC/TC
 Series
 102 to 358

DIMENSIONS

Table I								
TYPE	H / H ₁	В	Р	L	Т	WI	W2	
YC102	H: 0.35 ±0.10	0.20 ±0.10	0.50 ±0.05	0.80 ±0.10	0.35 ±0.10	0.15 ±0.10	0.60 ±0.10	
YC104	H: 0.20 ±0.10	0.15 ±0.05	0.40 ±0.10	1.40 ±0.10	0.35 ±0.10	0.15 ±0.10	0.60 ±0.10	
YCI22	H: 0.21 +0.10/-0.05	0.20 ±0.10	0.67 ±0.05	1.00 ±0.10	0.30 ±0.10	0.25 ±0.10	1.00 ±0.10	
YCI24	H: 0.45 ±0.05	0.20 10 15		200.1010	0.45 10.10	0.20 10 15		
10124	H ₁ : 0.30 ±0.05	0.20 ±0.15	0.50 ±0.05	2.00 ±0.10	0.45 ±0.10	0.30 ±0.15	1.00 ±0.10	
YC162	H: 0.30 ±0.10	0.30 ±0.10	0.80 ±0.05	1.60 ±0.10	0.40 ±0.10	0.30 ±0.10	1.60 ± 0.10	
YC164	H: 0.65 ±0.05	0.20 10 15	0.80 ±0.05	220 10 15	0.40.10.10	0.20 10 15		
	H ₁ : 0.50 ±0.15	0.30 ±0.15		3.20 ±0.15	0.60 ±0.10	0.30 ±0.15	1.60 ±0.15	
YC248	H: 0.45 ±0.05	0.20 10 15		4.00 10.20	0.45 1.0.10	0.40.10.15	1.60 ± 0.15	
10240	H ₁ : 0.30 ±0.05	0.30 ±0.15	0.50 ±0.05	4.00 ±0.20	0.45 ±0.10	0.40 ±0.15	1.60 ±0.15	
YC324	H: 1,10 ±0,15	0.50,10.20			0 (0 1 0 1 0		220 1020	
10324	H ₁ : 0.90 ±0.15	0.50 ±0.20	1.27 ±0.05	5.08 ±0.20	0.60 ±0.10	0.50 ±0.15	3.20 ±0.20	
TCI22	H : 0.30 ±0.05	0.25 ±0.15	0.50 ±0.05	1.00 ±0.10	0.30 ±0.10	0.25 ±0.15	1.00 ±0.10	
TCI24	H:0.30 ±0.10	0.20 ±0.10	0.50 ±0.05	2.00 ±0.10	0.40 ±0.10	0.25 ±0.10	1.00 ±0.10	
TCI64	H: 0.60 ±0.15	0.30 ±0.15	0.80 ±0.05	3.20 ±0.15	0.60 ±0.10	0.30 ±0.15	1.60 ±0.15	
YCI58	H: 0.45 ± 0.05	0.30 ±0.15	0.64 ±0.05	3.20 ±0.20	0.60 ±0.10	0.35 ±0.15	1.60 ± 0.15	
YC358	H: 1.10±0.15	0.50 10.15		(40 10 20	0 (0 1 0 1 0	0.50.10.15	220.1020	
1030	H1: 0.90±0.15	0.50 ±0.15	1.27 ±0.05	6.40 ±0.20	0.60 ±0.10	0.50 ±0.15	3.20 ±0.20	

ELECTRICAL CHARACTERISTICS

Table 1	2								
TYPE	POWER P70	OPERATING TEMP. RANGE	MWV	RCOV	DWV	RESISTANCE RANGE & TOLERANCE	T. C. R.	Jumper crit (unit	
YC102	1/32W	-55°C to +125°C	15V	30V	30V	$\begin{array}{l} \text{E24 } \pm 5\% \ 0\Omega \leq R \leq IM\Omega \\ \text{E24/E96 } \pm 1\% \ 0\Omega \leq R \leq IM\Omega \\ \text{Jumper} < 0.05\Omega \end{array}$	±200 ppm/°C -	Rated current Max. current	0.5 1.0
YC104	1/32W	-55°C to +125°C	12.5V	25V	25V	$\begin{array}{l} \text{E24 } \pm 5\% \text{IO}\Omega \leq \text{R} \leq \text{IM}\Omega \\ \text{E24/E96 } \pm 1\% \text{IO}\Omega \leq \text{R} \leq \text{IM}\Omega \\ \text{Jumper} < 0.05\Omega \end{array}$	±200 ppm/ C-	Rated current Max. current	0.5 1.0
YC122	1/16W	-55°C to +125°C	50V	100V	100V	$\begin{array}{l} \text{E24 } \pm 5\% \ensuremath{\Omega \leq R \leq IM\Omega} \\ \text{E24/E96 } \pm 1\% \ensuremath{\Omega \leq R \leq IM\Omega} \\ \text{Jumper} < 0.05 \ensuremath{\Omega \leq R} \end{array}$		Rated current Max. current	0.5 1.0
YCI24	1/16W	-55°C to +155°C	25V	50V	100V	$\begin{array}{l} \text{E24 } \pm 5\% \ \Omega \leq \text{R} \leq \text{IM}\Omega \\ \text{E24/E96 } \pm 1\% \ \Omega \leq \text{R} \leq \text{IM}\Omega \\ \text{Jumper} < 0.05\Omega \end{array}$	$ \Omega \leq R \leq 0\Omega^{-1}$ ±250 ppm/°C $ 0\Omega \leq R \leq M\Omega$ ±200 ppm/°C-	Rated current Max. current	1.0 2.0
YC162	1/16W	-55°C to +125°C	50V	100V	100V	$\begin{array}{l} \text{E24 } \pm 5\% \ \Omega \leq \text{R} \leq \text{IM}\Omega \\ \text{E/24/E96 } \pm 1\% \ \Omega \leq \text{R} \leq \text{IM}\Omega \\ \text{Jumper} < 0.05\Omega \end{array}$	_200 pp C	Rated current Max. current	1.0 2.0
YCI64	1/16W	-55°C to +155°C	50V	100V	100V	$\begin{array}{l} \text{E24 } \pm 5\% \ensuremath{\Omega \leq R \leq IM\Omega} \\ \text{E24/E96 } \pm 1\% \ensuremath{\Omega \leq R \leq IM\Omega} \\ \text{Jumper} < 0.05 \ensuremath{\Omega \leq R} \end{array}$		Rated current Max. current	1.0 2.0
YC248	1/16W	-55°C to +155°C	50V	100V	100V	$\begin{array}{l} \text{E24 } \pm 5\% \text{IO}\Omega \leq \text{R} \leq \text{IM}\Omega \\ \text{E24/E96 } \pm 1\% \text{IO}\Omega \leq \text{R} \leq \text{IM}\Omega \\ \text{Jumper} < 0.05\Omega \end{array}$		Rated current Max. current	2.0 10.0
YC324	1/8W	-55°C to +155°C	200V	500V	500V	$\begin{array}{l} E24 \pm 5\% I0\Omega \leq R \leq IM\Omega \\ E24/E96 \pm I\% I0\Omega \leq R \leq IM\Omega \end{array}$			
TCI22	1/16W	-55°C to +125°C	50V	100V	100V	$\begin{array}{l} \text{E24 } \pm 5\% \text{I0} \ensuremath{\Omega} \le \ensuremath{R} \le \ensuremath{IM} \ensuremath{\Omega} \\ \text{E24/E96 } \pm 1\% \text{I0} \ensuremath{\Omega} \le \ensuremath{R} \le \ensuremath{IM} \ensuremath{\Omega} \\ \text{Jumper} < 0.05 \ensuremath{\Omega} \end{array}$	±200 ppm/°C	Rated current Max. current	1.0 1.5
TCI24	1/16W	-55°C to +125°C	50V	100V	100V	$\begin{array}{l} \text{E24 } \pm 5\% \text{IO}\Omega \leq \text{R} \leq \text{IM}\Omega \\ \text{E24/E96 } \pm 1\% \text{IO}\Omega \leq \text{R} \leq \text{IM}\Omega \\ \text{Jumper} < 0.05\Omega \end{array}$		Rated current Max. current	1.0 1.5
TCI64	1/16W	-55°C to +155°C	50V	100V	100V	$\begin{array}{l} \text{E24 } \pm 5\% \text{IO}\Omega \leq \text{R} \leq \text{IM}\Omega \\ \text{E24/E96 } \pm 1\% \text{IO}\Omega \leq \text{R} \leq \text{IM}\Omega \\ \text{Jumper} < 0.05\Omega \end{array}$		Rated current Max. current	1.0 2.0
YC158	1/16W	-55°C to +155°C	25V	50V	50V	E24 ±5% 10 Ω ≤ R ≤ 100K Ω	-		
YC358	1/16W	-55°C to +155°C	50V	100V	100V	E24 $\pm 5\%$ 10 $\Omega \le R \le 330$ K Ω	-		

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity										
PACKING STYLE	PACKING STYLE	YC102 /104	YC/TC 122	YC/TC 124	YC162	YC/TC 164	YC248	YC324	YC158	YC358
Paper taping reel (R)	7" (178mm)	10,000	10,000	10,000	5,000	5,000	5,000		5,000	
	3" (254mm)		50,000	40,000		20,000			20,000	
Embossed taping reel (K)	7" (178mm)						4,000	4,000		4,000

NOTE

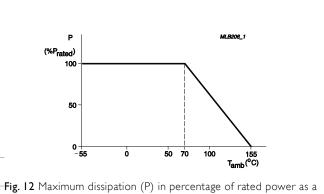
1. For tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

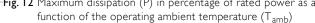
Chip Resistor Surface Mount YC/TC SERIES 102 to 358

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

YCI02/104/122/162, TC122/124 Range:


-55°C to +125°C (Fig.12)


YCI24/164/248/324/158/358, TCI64 Range:

-55°C to +155°C(Fig.13)

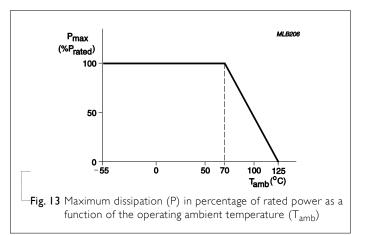
POWER RATING

Each type rated power at 70°C YC102/104 = 1/32 W YC122/124/162/164/248/158/358 = 1/16 W YC324 = 1/8 W TC122/124/164 = 1/16 W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

 $V = \sqrt{(P \times R)}$


or max. working voltage whichever is less

Where

V=Continuous rated DC or AC (rms) working voltage (V)

P=Rated power (W)

R=Resistance value (Ω)

Chip Resistor Surface Mount YC/TC SERIES 102 to 358

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Life/	MIL-STD-202G-method 108A	1,000 hours at 70±5 °C applied RCWV	±(2%+0.05 Ω)
Operational Life/ Endurance	IEC 60115-1 4.25.1	1.5 hours on, 0.5 hour off, still air required	<100 m Ω for Jumper
Endurance	JIS C 5202-7.10		
High Temperature	MIL-STD-202G-method 108A	1,000 hours at maximum operating	±(1%+0.05 Ω)
Exposure/ Endurance at	IEC 60115-1 4.25.3 JIS C 5202-7.11	temperature depending on specification, unpowered	$<$ 50 m Ω for Jumper
Upper Category Temperature	,	No direct impingement of forced air to the parts	
		Tolerances: 125±3 °C	
Moisture	MIL-STD-202G-method 106F	Each temperature / humidity cycle is defined at	
Resistance	IEC 60115-1 4.24.2	8 hours (method 106F), 3 cycles / 24 hours for 10d with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	$<$ I 00 m Ω for Jumper
		Parts mounted on test-boards, without condensation on parts	
		Measurement at 24±2 hours after test conclusion	
Thermal Shock	MIL-STD-202G-method 107G	-55/+125 °C	±(1%+0.05 Ω)
		Note: Number of cycles required is 300. Devices unmounted	$<$ 50 m Ω for Jumper
		Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	
Short Time	MIL-R-55342D-para 4.7.5	2.5 times RCVV or maximum overload	±(2%+0.05 Ω)
Overload	IEC60115-14.13	voltage whichever is less for 5 sec at room	${<}50~{ m m}\Omega$ for Jumper
		temperature	No visible damage
Board Flex/	IEC60115-14.33	Device mounted on PCB test board as	±(1%+0.05 Ω)
Bending		described, only I board bending required	$<$ 50 m Ω for Jumper
		3 mm bending	No visible damage
		Bending time: 60±5 seconds	
		Ohmic value checked during bending	

 YAGEO
 Phicomp

 Chip Resistor Surface Mount
 YC/TC
 SERIES
 102 to 358

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability			
- Wetting	IPC/JEDECJ-STD-002B test B	Electrical Test not required	Well tinned (≥95% covered)
	IEC 60068-2-58	Magnification 50X	No visible damage
		SMD conditions:	
		I st step: method B, aging 4 hours at 155 °C dry heat	
		2^{nd} step: leadfree solder bath at 245±3 °C	
		Dipping time: 3±0.5 seconds	
- Leaching	IPC/JEDECJ-STD-002B test D	Leadfree solder, 260 °C, 30 seconds	No visible damage
	IEC 60068-2-58	immersion time	
- Resistance to	MIL-STD-202G-method 210F	Condition B, no pre-heat of samples	±(1%+0.05 Ω)
Soldering Heat	IEC 60068-2-58	Leadfree solder, 270 °C, 10 seconds	<50 m Ω for Jumper
		immersion time	No visible damage
		Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	-

YAGEO	Phicomp
	Chip Resisto

Chip Resistor Surface Mount YC/TC SERIES 102 to 358

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 0	Nov. 14, 2014	-	- First issue of this specification

"Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resistor Networks & Arrays category:

Click to view products by Yageo manufacturer:

Other Similar products are found below :

CSC06A0122K0GEJ CSC08A01470KGEK M8340105K1002FGD03 M8340105M1202GGD03 M8340105M4700JGD03 M8340107K2002GCD03 M8340108K1001FCD03 M8340108K3240FGD03 M8340108K4991FGD03 M8340108K6202GGD03 M8340109MA010GHD03 744C083101JTR EXB-U18240JX 744C083270JTR 745C102472JP 745X101103JP MDP1603100KGE04 770101223 MNR04M0APJ471 MNR14E0APJ100 MNR18E0APJ102 MNR18E0APJ680 ACAS06S0830339P100 ACAS06S0830343P100 ACAS06S0830344P100 RAVF164DJT68K0 RM2012A-102/104-PBVW10 RM2012A-102503-PBVW10 RM2012A-502104-PBVW10 NRSN04I4J220TRF NRSN06I4J330TRF NRSNA4I4J330TRF 8B472TR4 ACAS06S0830341P100 ACAS06S0830342P100 ACAS06S0830345P100 EXB-18N390JX EXB-V4N100JV CSC09A014K70JEK M8340105K1502GGD03 M8340105K8251FGD03 M8340105M1001JCD03 M8340105M1002GCD03 M8340106K4701GGD03 M8340107K1004GGD03 M8340108K1000FGD03 M8340108K1000GGD03 M8340108K1002GGD03 M8340108K1202GGD03 M8340108K2001FCD03