

DATA SHEET

ARRAY CHIP RESISTORS

YC/TC

5%, 1%

sizes

YC:102/104/122/124/162/164/248/324/158/358 TC: 122/124/164

RoHS compliant

YAGEO Phícomp

SCOPE

This specification describes YC (convex) and TC (concave) series chip resistor arrays with lead-free terminations made by thick film process.

APPLICATIONS

- Terminal for SDRAM and DDRAM
- Computer applications: laptop computer, desktop computer
- Consume electronic equipments: PDAs, PNDs
- Mobile phone, telecom...

FEATURES

- More efficient in pick & place application
- · Low assembly costs
- · RoHS compliant
 - Products with lead free terminations meet RoHS requirements
 - Pb-glass contained in electrodes
 - Resistor element and glass are exempted by RoHS
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production

ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

$${\mathsf{TC}}^{\mathsf{XXX}}_{(1)}$$
 - ${\mathsf{X}}^{\mathsf{X}}_{(2)}$ ${\mathsf{X}}^{\mathsf{X}}_{(3)}$ ${\mathsf{X}}^{\mathsf{X}}_{(4)}$ ${\mathsf{XXX}}^{\mathsf{XXXX}}_{(5)}$ ${\mathsf{XXXX}}^{\mathsf{L}}_{(7)}$

(I) SIZE

YC:102/104/122/124/162/164/248/324/158/358

TC: 122/124/164

(2) TOLERANCE

(3) PACKAGING TYPE

R = Paper taping reel K = Embossed plastic tape reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(5) TAPING REEL

07 = 7 inch dia, Reel 13 = 13 inch dia, Reel

(6) RESISTANCE VALUE

There are 2~4 digits indicated the resistor value. Letter R/K/M is decimal point. Detailed resistance rules show in table of "Resistance rule of global part number".

(7) DEFAULT CODE

number

Letter L is the system default code for ordering only. (Note)

Resistance code rule Example 0R 0R = Jumper $IR = I \Omega$ **XRXX** $IR5 = 1.5 \Omega$ (1 to 9.76 Ω) $9R76 = 9.76 \Omega$ **XXRX** $IOR = IO \Omega$ $97R6 = 97.6 \Omega$ (10 to 97.6 Ω) **XXXR** $100R = 100 \Omega$ (100 to 976 Ω)

Resistance rule of global part

$(100 \text{ to } 976 \Omega)$ XKXX IK = 1,000 Ω (I to 9.76 ΚΩ) 9K76 = 9760 Ω

ORDERING EXAMPLE

The ordering code of a YC122 convex chip resistor array, value 1,000 Ω with ±5% tolerance, supplied in 7-inch tape reel is: YC122-JR-071KL.

NOTE

- All our RSMD products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / 12NC can be added (both are on customer request)

PHYCOMP BRAND ordering codes

Both GLOBAL PART NUMBER (preferred) and I2NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

VVV VVVVV I

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2. TC122 series is supplied and ordered by global part number only.

12NC CODE

2350		XXX	<u> </u>			
(1)		(7	2) (3) (4)			
	TYPE/		TOL.	RESISTANCE	PAPER / PE TAPE ON REEL	(units) (2)
	2×0402	IN (I)	(%)	RANGE	10,000	50,000
	ARV321	2350	±5%	I to I $M\Omega$	013 1xxx	013 12xxx
	ARV322	2350	±1%	10 to 1 $M\Omega$	013 2xxxx	013 3xxxx
	Jumper	2350	-	0 Ω	013 91001	

- (1) The resistors have a 12-digit ordering code starting with 2350.
- (2) The subsequent 4 or 5 digits indicate the resistor tolerance and packaging.
- (3) The remaining 4 or 3 digits represent the resistance value with the last digit indicating the multiplier as shown in the table of "Last digit of I2NC".
- (4) "L" is optional symbol (Note).

ORDERING EXAMPLE

The ordering code of a ARV321 resistor, value 1,000 Ω with ±5% tolerance, supplied in tape of 10,000 units per reel is: 235001311102(L) or YC122-JR-071KL.

Last digit of 12NC Resistance decade ⁽³⁾	Last digit
0.01 to 0.0976 Ω	0
0.1 to 0.976 Ω	7
I to 9.76 Ω	8
10 to 97.6 Ω	9
100 to 976 Ω	1
I to 9.76 KΩ	2
10 to 97.6 KΩ	3
100 to 976 K Ω	4
I to 9.76 $M\Omega$	5
10 to 97.6 MΩ	6
Example: 0.02 Ω	= 0200 or 200

Example.	0.02 12	_	0200 or 200
	0.3 Ω	=	3007 or 307
	ΙΩ	=	1008 or 108
	33 ΚΩ	=	3303 or 333
	Ι0 ΜΩ	=	1006 or 106

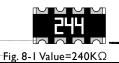
NOTE

- I. All our RSMD products are RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

<u>MARKING</u> YC102/122 No marking Fig. I YCI04 No marking Fig. 2 YC124/164/324 I-Digit marking Fig. 3 Jumper= 0Ω E-24 series: 3 digits First two digits for significant figure and 3rd digit for number of zeros Fig. 3-1 Value=240K Ω YC248 I-Digit marking Fig. 4 Jumper= 0Ω E-24 series: 3 digits First two digits for significant figure and 3rd digit for number of zeros Fig. 4-1 Value=240KΩ YC158/358 E-24 series: 3 digits First two digits for significant figure and 3rd digit for number of zeros Fig. 5 Value=24KΩ Fig. 5-1 $Value=240K\Omega$ TCI22 No marking Fig. 6 TCI24

No marking

Fig. 7

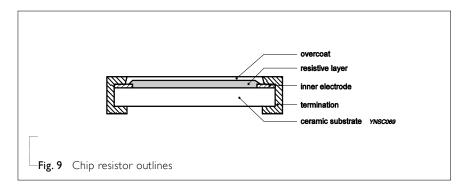

TC164

YAGEO Phicomp

I-Digit marking

Fig. 8 Jumper= 0Ω

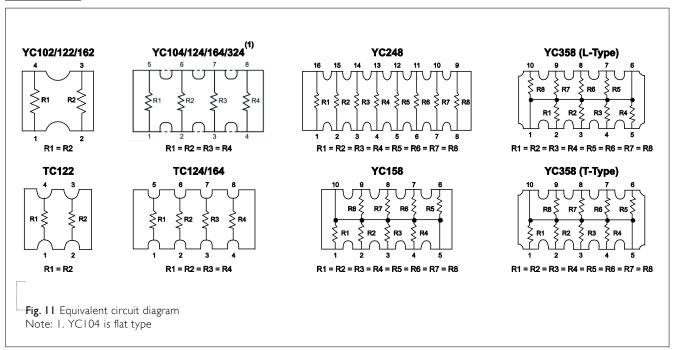
E-24 series: 3 digits

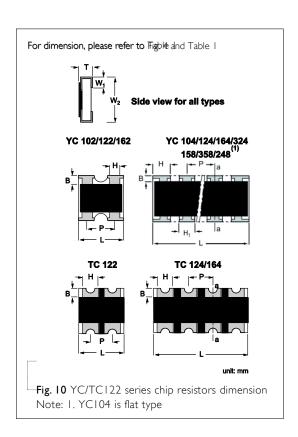

First two digits for significant figure and 3rd digit for number of zeros

For further marking information, please refer to data sheet "Chip resistors marking".

CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (matte tin on Nibarrier) are added as shown in Fig.9.


OUTLINES



SCHEMATIC

YAGEO Phicomp

YAGEO Phicomp

Chip Resistor Surface Mount | YC/TC | SERIES | 102 to 358

DIMENSIONS

 Table	I

TYPE	H / H _I	В	Р	L	Т	WI	W2
YC102	H: 0.35 ±0.10	0.20 ± 0.10	0.50 ±0.05	0.80 ±0.10	0.35 ± 0.10	0.15 ± 0.10	0.60 ±0.10
YC104	H: 0.20 ±0.10	0.15 ± 0.05	0.40 ±0.10	1.40 ±0.10	0.35 ± 0.10	0.15 ± 0.10	0.60 ±0.10
YC122	H: 0.21 +0.10/-0.05	0.20 ±0.10	0.67 ± 0.05	1.00 ±0.10	0.30 ±0.10	0.25 ± 0.10	1.00 ±0.10
YCI24	H: 0.45 ± 0.05	0.20 ±0.15	0.50.40.05	2.00 +0.10	0.45 ±0.10	0.30 +0.15	100 +0 10
	H _I : 0.30 ± 0.05	0.20 ±0.15	0.50 ±0.05	2.00 ±0.10	0.45 ± 0.10	0.30 ±0.15	1.00 ±0.10
YC162	H: 0.30 ±0.10	0.30 ± 0.10	0.80 ± 0.05	1.60 ±0.10	0.40 ± 0.10	0.30 ± 0.10	1.60 ± 0.10
YC164	H: 0.65 ± 0.05	0.30 ±0.15	0.80 ±0.05	3.20 ± 0.15	0.60 ±0.10	0.30 ± 0.15	1.60 ±0.15
	H _I : 0.50 ± 0.15	0.30 ± 0.13	0.00 10.03	3.20 ± 0.13	0.00 10.10	0.30 ±0.13	1.00 ±0.15
YC248	H: 0.45 ± 0.05	0.30 ±0.15	±0.15 0.50 ±0.05	4.00 ±0.20	0.45 ± 0.10	0.40 ± 0.15	1.60 ±0.15
	H _I : 0.30 ±0.05	0.30 ±0.13	0.50 10.05	7.00 ±0.20	0.13 10.10	0.10 10.13	1.00 ±0.15
YC324	H: 1.10 ± 0.15	0.50 ±0.20	1,27 ± 0.05	5.08 ±0.20	0.60 ±0.10	0.50 ±0.15	3.20 ± 0.20
	H ₁ : 0.90 ±0.15	0.30 ±0.20	1.27 ±0.03	3.00 ±0.20	0.00 ±0.10	0.50 ±0.15	J.20 ±0.20
TC122	H: 0.30 ±0.05	0.25 ± 0.15	0.50 ± 0.05	1.00 ±0.10	0.30 ± 0.10	0.25 ± 0.15	1.00 ±0.10
TC124	H: 0.30 ±0.10	0.20 ± 0.10	0.50 ± 0.05	2.00 ± 0.10	0.40 ± 0.10	0.25 ± 0.10	1.00 ±0.10
TC164	H: 0.60 ± 0.15	0.30 ± 0.15	0.80 ± 0.05	3.20 ± 0.15	0.60 ± 0.10	0.30 ± 0.15	1.60 ± 0.15
YC158	H: 0.45 ± 0.05	0.30 ± 0.15	0.64 ± 0.05	3.20 ± 0.20	0.60 ±0.10	0.35 ± 0.15	1.60 ± 0.15
YC358	H: 1.10 ± 0.15	0.50 ±0.15	1.27 ± 0.05	6.40 ±0.20	0.60 ±0.10	0.50 ±0.15	3.20 ±0.20
	HI: 0.90±0.15	0.50 ± 0.15	1.27 ±0.03	0.70 ± 0.20	0.00 ±0.10	0.50 ± 0.15	3.20 ± 0.20

ELECTRICAL CHARACTERISTICS

YAGEO Phicomp

lab	le	2

TYPE	POWER P ₇₀	OPERATING TEMP. RANGE	MWV	RCOV	DWV	RESISTANCE RANGE & TOLERANCE	T. C. R.	Jumper crit (unit	
YC102	1/32W	-55°C to +125°C	15V	30V	30V	E24 $\pm 5\%$ $10\Omega \le R \le 1M\Omega$ E24/E96 $\pm 1\%$ $10\Omega \le R \le 1M\Omega$ Jumper $< 0.05\Omega$		Rated current Max. current	0.5 1.0
YC104	1/32W	-55°C to +125°C	12.5V	25V	25V	E24 \pm 5% $10\Omega \le R \le IM\Omega$ E24/E96 \pm 1% $10\Omega \le R \le IM\Omega$ Jumper $< 0.05\Omega$		Rated current Max. current	
YCI22	1/16W	-55°C to +125°C	50V	100V	100V	$\begin{array}{c cccc} \text{E24} \pm 5\% & \text{I} \Omega \leq \text{R} \leq \text{IM} \Omega \\ \text{E24/E96} \pm \text{I}\% & \text{I} \Omega \leq \text{R} \leq \text{IM} \Omega \\ \text{Jumper} & < 0.05 \Omega \end{array}$		Rated current Max. current	
YCI24	1/16W	-55°C to +155°C	25V	50V	100V	E24 \pm 5% $ \Omega \le R \le M\Omega $ E24/E96 \pm 1% $ \Omega \le R \le M\Omega $ Jumper $< 0.05\Omega$	$1\Omega \le R \le 10\Omega$ $\pm 250 \text{ ppm/°C}$ $10\Omega \le R \le 1M\Omega$ $\pm 200 \text{ ppm/°C}$	Rated current Max. current	1.0
YC162	1/16W	-55°C to +125°C	50V	100V	100V	$\begin{array}{ccc} \text{E24} \pm 5\% & \text{I} \ \Omega \leq \text{R} \leq \text{IM} \ \Omega \\ \text{E/24/E96} \pm \text{I}\% & \text{I} \ \Omega \leq \text{R} \leq \text{IM} \ \Omega \\ \text{Jumper} & < 0.05 \ \Omega \end{array}$	- ±200 ррпп С-	Rated current Max. current	
YC164	1/16W	-55°C to +155°C	50V	100V	100V	$\begin{array}{c c} \text{E24} \pm 5\% & \text{I}\Omega \leq \text{R} \leq \text{IM}\Omega \\ \text{E24/E96} \pm \text{I}\% & \text{I}\Omega \leq \text{R} \leq \text{IM}\Omega \\ \text{Jumper} & < 0.05\Omega \end{array}$		Rated current Max. current	1.0 2.0
YC248	1/16W	-55°C to +155°C	50V	100V	100V	E24 \pm 5% $10\Omega \le R \le IM\Omega$ E24/E96 \pm 1% $10\Omega \le R \le IM\Omega$ Jumper $< 0.05\Omega$		Rated current Max. current	
YC324	1/8W	-55°C to +155°C	200V	500V	500V	E24 \pm 5% $10\Omega \le R \le 1M\Omega$ E24/E96 \pm 1% $10\Omega \le R \le 1M\Omega$			
TC122	1/16W	-55°C to +125°C	50V	100V	100V	E24 $\pm 5\%$ $10\Omega \le R \le 1M\Omega$ E24/E96 $\pm 1\%$ $10\Omega \le R \le 1M\Omega$ Jumper $< 0.05\Omega$		Rated current Max. current	1.0 1.5
TC124	1/16W	-55°C to +125°C	50V	100V	100V	E24 ±5% $10\Omega \le R \le IM\Omega$ E24/E96 ±1% $10\Omega \le R \le IM\Omega$ Jumper < 0.05Ω		Rated current Max. current	1.0
TC164	1/16W	-55°C to +155°C	50V	100V	100V	E24 ±5% $10\Omega \le R \le IM\Omega$ E24/E96 ±1% $10\Omega \le R \le IM\Omega$ Jumper < 0.05Ω		Rated current Max. current	1.0
YCI58	1/16W	-55°C to +155°C	25V	50V	50V	E24 ±5% 10 Ω ≤ R ≤ 100K Ω			
YC358	1/16W	-55°C to +155°C	50V	100V	100V	E24 ±5% 10 Ω ≤ R ≤ 330K Ω			

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	PACKING STYLE	YC102 /104	YC/TC 122	YC/TC 124	YC162	YC/TC 164	YC248	YC324	YC158	YC358
Paper taping reel (R)	7" (178mm)	10,000	10,000	10,000	5,000	5,000	5,000		5,000	
	13" (254mm)		50,000	40,000		20,000			20,000	
Embossed taping reel (K)	7" (178mm)						4,000	4,000		4,000

NOTE

1. For tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

YC102/104/122/162, TC122/124 Range:

-55°C to +125°C (Fig.12)

YC124/164/248/324/158/358, TC164 Range:

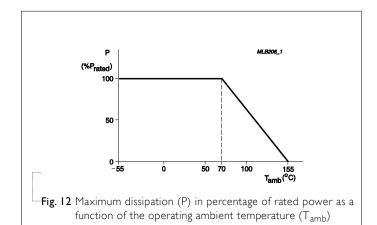
-55°C to +155°C(Fig.13)

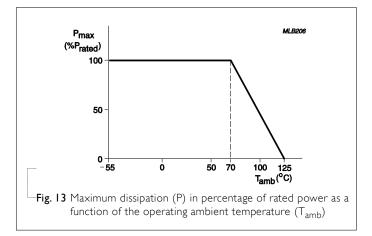
POWER RATING

Each type rated power at 70°C YC102/104 = 1/32 WYC122/124/162/164/248/158/358 = 1/16 W YC324 = 1/8 WTC122/124/164 = 1/16 W

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(P \times R)}$$

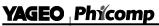

or max. working voltage whichever is less


Where

V=Continuous rated DC or AC (rms) working voltage (V)

P=Rated power (W)

R=Resistance value (Ω)


102 to 358

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Life/ Operational Life/ Endurance	MIL-STD-202G-method 108A IEC 60115-1 4.25.1 JIS C 5202-7.10	1.51	$\pm (2\% + 0.05 \ \Omega)$ <100 m Ω for Jumper
High Temperature Exposure/ Endurance at Upper Category Temperature	MIL-STD-202G-method 108A IEC 60115-1 4.25.3 JIS C 5202-7.11	I,000 hours at maximum operating temperature depending on specification, unpowered No direct impingement of forced air to the parts Tolerances: I25±3 °C	\pm (1%+0.05 Ω) <50 mΩ for Jumper
Moisture Resistance	MIL-STD-202G-method 106F IEC 60115-1 4.24.2	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d with 25 °C / 65 °C 95% R.H., without steps 7a & 7b, unpowered Parts mounted on test-boards, without condensation on parts	
		Measurement at 24±2 hours after test conclusion	
Thermal Shock	MIL-STD-202G-method 107G	-55/+125 °C Note: Number of cycles required is 300. Devices unmounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air — Air	$\pm (1\% + 0.05 \ \Omega)$ <50 m Ω for Jumper
Short Time Overload	MIL-R-55342D-para 4.7.5 IEC60115-1 4.13	2.5 times RCWV or maximum overload voltage whichever is less for 5 sec at room temperature	±(2%+0.05 Ω) <50 mΩ for Jumper No visible damage
Board Flex/ Bending	IEC60115-1 4.33	Device mounted on PCB test board as described, only I board bending required 3 mm bending Bending time: 60±5 seconds Ohmic value checked during bending	±(1%+0.05 Ω) <50 mΩ for Jumper No visible damage

Chin	Resistor	Surface	Moi

Mount YC/TC SERIES 102 to 358

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	IPC/JEDECJ-STD-002B test B IEC 60068-2-58	Electrical Test not required Magnification 50X SMD conditions: Ist step: method B, aging 4 hours at 155 °C dry heat 2nd step: leadfree solder bath at 245±3 °C Dipping time: 3±0.5 seconds	Well tinned (≥95% covered) No visible damage
- Leaching	IPC/JEDECJ-STD-002B test D IEC 60068-2-58	Leadfree solder, 260 °C, 30 seconds immersion time	No visible damage
- Resistance to Soldering Heat	MIL-STD-202G-method 210F IEC 60068-2-58	Condition B, no pre-heat of samples Leadfree solder, 270 °C, 10 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	$\pm (1\% + 0.05 \ \Omega)$ <50 m Ω for Jumper No visible damage

102 to 358

12 12

Product specification

REVISION HISTORY

REVISION DATE CHANGE NOTIFICATION **DESCRIPTION**

Version 0 Nov. 14, 2014 - First issue of this specification

[&]quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resistor Networks & Arrays category:

Click to view products by Yageo manufacturer:

Other Similar products are found below:

CSC6600552K000B8768 CSC06A0122K0GEJ CSC08A01470KGEK M8340105K1002FGD03 M8340106MA010FHD03

M8340107K1471FGD03 M8340108K1001FCD03 M8340108K2402GGD03 M8340108K3240FGD03 M8340108K3242FGD03

M8340108K3322FCD03 M8340108K4991FGD03 M8340108K6202GGD03 M8340109K2002FCD03 M8340109M4701GCD03 EXB
24N121JX EXB-24N330JX EXB-24N470JX EXB-A10E102J EXB-A10E104J 744C083101JTR EXB-U14360JX EXB-U18240JX EXB
U18390JX 745X101103JP MDP1603100KGE04 PRA100I2-1KBWNW GUS-SS4-BLF-01-1002-G ACAS06S0830339P100

ACAS06S0830343P100 ACAS06S0830344P100 RM2012A-102/104-PBVW10 RM2012A-102503-PBVW10 RM2012A-502104-PBVW10

RM3216B-102302-PBVW10 L091S102LF ACAS06S0830341P100 ACAS06S0830342P100 ACAS06S0830345P100 EXB-14V300JX EXB
U14220JX EXB-U14470JX EXB-U18330JX EXB-V4N100JV EXB-V8V220GV PRA100I2-10KBWN PRA100I4-10KBWN

CSC09A014K70JEK M8340102M4701JAD04 M8340105K1002GGD03