

DATA SHEET

ARRAY CHIP RESISTORS

YC/TC 5%, 1%

size

YC:102/104/122/124/162/164/248/324/158T/358L/358T

TC: 122/124/164

RoHS compliant

YAGEO Phícomp

SCOPE

This specification describes YC (convex, flat) and TC (concave) series chip resistor arrays with lead-free terminations made by thick film process.

APPLICATIONS

- Terminal for SDRAM and DDRAM
- Computer applications: laptop computer, desktop computer
- Consume electronic equipments: PDAs. PNDs
- Mobile phone, telecom...

FEATURES

- · AEC-Q200 qualified
- More efficient in pick & place application
- · Low assembly costs
- RoHS compliant
- Products with lead free terminations meet RoHS requirements
- Pb-glass contained in electrodes
- Resistor element and glass are exempted by RoHS
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production
- Halogen Free Epoxy

ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERSRED)

YC XXXX X X X X X XX XXX L/T (8)

(I) SIZE

YC:102/104/122/124/162/164/248/324/158T/358L/358T

TC: 122/124/164

(2) ARRAYS OR NETWORKS

Array YC102/104/122/124/162/164/248/324: -Network YC158T/YC358L/YC358T: NA

(3) TOLERANCE

(4) PACKAGING TYPE

R = Paper taping reel K = Embossed plastic tape reel

(5) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(6) TAPING REEL

07 = 7 inch dia. Reel 13 = 13 inch dia. Reel

(7) RESISTANCE VALUE

There are $2\sim4$ digits indicated the resistor value. Letter R/K/M is decimal point. Detailed resistance rules show in table of "Resistance rule of global part number".

(8) DEFAULT CODE

Letter L is the system default code for ordering only. (Note)
Letter T is the only default code for YCI02.

ORDERING EXAMPLE

The ordering code of a YC122 convex chip resistor array, value 1,000 $\,\Omega$ with ±5% tolerance, supplied in 7-inch tape reel is: YC122-JR-071KL.

YC158T network, value $100,000\Omega$ with 5% tolerance, supplied in 7-inch tape reel is: YC158TJR-07100KL

NOTE

- All our RSMD products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

Resistance rule of global part number Resistance code rule Example 0R 0R = Jumper $IR = I \Omega$ XRXX $IR5 = 1.5 \Omega$ (1 to 9.76 Ω) $9R76 = 9.76 \Omega$ **XXRX** $IOR = IO \Omega$ (10 to 97.6 Ω) $97R6 = 97.6 \Omega$ XXXR $100R = 100 \Omega$ (100 to 976 Ω) XKXX $IK = 1,000 \Omega$ (I to 9.76 K Ω) $9K76 = 9760 \Omega$ ΧM $IM = 1,000,000 \Omega$ $(I M\Omega)$

PHYCOMP BRAND ordering codes

Both GLOBAL PART NUMBER (preferred) and I2NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2. TC122 series is supplied and ordered by global part number only.

12NC CODE

PE/ START TOL. RESISTANCE PAPER / PE TAPE ON REEL (units) (2) 0.01 to (402 IN (1)) (%) RANGE 10,000 50,000 1 to (402 2350 $\pm 5\%$ 1 to 1 MΩ 013 11××× 013 12××× 013 3××× 10 to (402 2350 $\pm 1\%$ 10 to 1 MΩ 013 2××× 013 3××× 100 to (402 2350 $\pm 1\%$ 10 to 1 MΩ 013 2××× 013 3××× 100 to (402 2350 $\pm 1\%$ 10 to 1 MΩ 013 2××× 013 3××× 100 to (402 2350 $\pm 1\%$ 10 to (402 2350
$\frac{1}{321}$ 2350 ±5% to MΩ 013 1 ××× 013 2 ××× 10 to MΩ 013 2 ××× 10 to 10 t
7321 2350 $\pm 5\%$ to M\O 013 1 xxx 013 1 2xxx 7322 2350 $\pm 1\%$ 10 to M\O 013 2xxx 013 3xxxx 10 to
7322 2350 $\pm 1\%$ 10 to 1 M Ω 013 2xxxx 013 3xxxx
per 2350 - 0 Ω 013 91001 -

- (2) The subsequent 4 or 5 digits indicate the resistor tolerance and packaging.
- (3) The remaining 4 or 3 digits represent the resistance value with the last digit indicating the multiplier as shown in the table of "Last digit of I2NC".
- (4) "L" is optional symbol (Note).

ORDERING EXAMPLE

The ordering code of a ARV321 resistor, value 1,000 Ω with $\pm 5\%$ tolerance, supplied in tape of 10,000 units per reel is: 235001311102(L) or YC122-JR-071KL.

Last digit of 12NC Resistance decade ⁽³⁾	Last digit
0.01 to 0.0976 Ω	0
0.I to 0.976 Ω	7
I to 9.76 Ω	8
10 to 97.6 Ω	9
100 to 976 Ω	1
I to 9.76 KΩ	2
10 to 97.6 KΩ	3
100 to 976 KΩ	4
I to 9.76 $M\Omega$	5
10 to 97.6 MΩ	6

Example:	0.02 Ω	=	0200 or 200
	0.3 Ω	=	3007 or 307
	ΙΩ	=	1008 or 108
	33 KΩ	=	3303 or 333
	I0 MO	=	1006 or 106

NOTE

- I. All our RSMD products are RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

<u>MARKING</u> YCI02 No marking Fig. I YC122 No marking Fig. 2 YCI04 No marking Fig. 3 YC124 / 162 / 164 / 324 I-Digit marking Fig. 4 Jumper= 0Ω E-24 series: 3 digits, 5% First two digits for significant figure and 3rd digit for number of zeros Fig. 4-1 Value=240KΩ YC248 I-Digit marking Fig. 5 Jumper= 0Ω E-24 series: 3 digits, 5% First two digits for significant figure and 3rd digit for number of zeros Fig. 5-1 Value=240K Ω YC158T/358L/358T E-24 series: 3 digits First two digits for significant figure and 3rd digit for number of zeros Fig. 6-1 Value=240KΩ Fig. 6 Value=24 Ω TC122 No marking Fig. 7 TCI24

Fig. 8

No marking

Phicomp

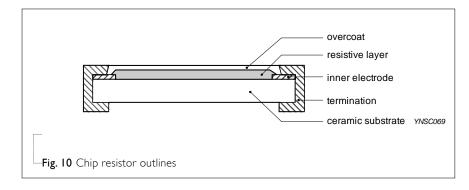
TC164

I-Digit marking

Fig. 9 Jumper= $\mathbf{0}\Omega$

E-24 series: 3 digits, 5%

First two digits for significant figure and 3rd digit for number of zeros

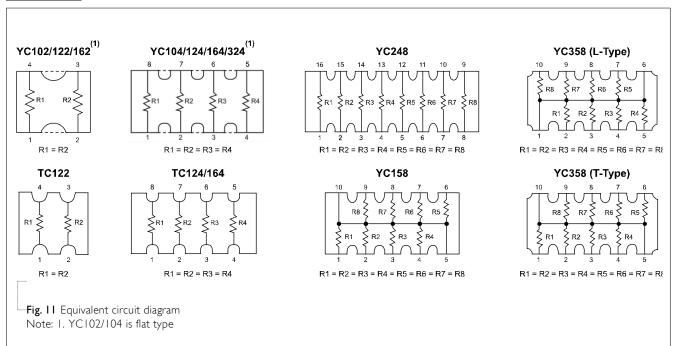

Fig. 9-1 Value=240KΩ

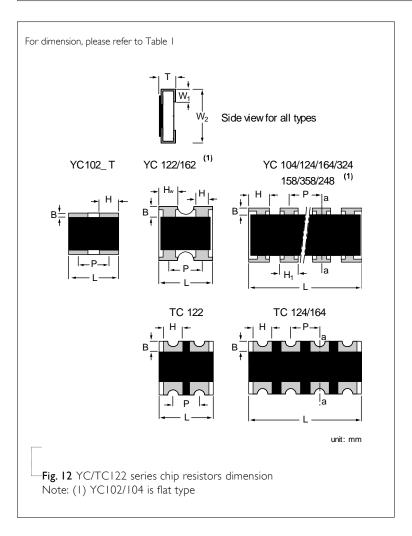
For further marking information, please refer to data sheet "Chip resistors marking".

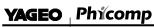
CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (matte tin on Nibarrier) are added as shown in Fig.9.

OUTLINES






Chip Resistor Surface Mount YC/TC SERIES

102 to 358

SCHEMATIC

Product specification

Chip Resistor Surface Mount YC/TC SERIES 102 to 358

7 12

DIMENSIONS

·····	Ta	h	ما	1
	ıa	יט	C	

TYPE	$H/H_1/H_W$	В	Р	L	Т	WI	W2
YC102	H: 0.25 ± 0.10	0.15 ±0.10	0.55 ±0.10	0.80 ±0.10	0.35 ±0.10	0.15 ±0.10	0.60 ±0.10
YC104	H: 0.20 ± 0.10	0.15 ± 0.05	0.40 ±0.10	1.40 ±0.10	0.35 ± 0.10	0.15 ± 0.10	0.60 ±0.10
YC122	H: 0.21+0.10 / -0.05 H _w : 0.35 ±0.10	0.20 ± 0.10	0.67 ± 0.05	1.00 ±0.10	0.30 ± 0.10	0.25 ± 0.10	1.00 ±0.10
YC124	H: 0.40 ± 0.15 H ₁ : 0.30 ± 0.05	0.20 ± 0.15	0.50 ± 0.05	2.00 ±0.10	0.45 ± 0.10	0.30 ± 0.15	1.00 ±0.10
YC162	H: 0.30 ±0.10 H _w : 0.65 ±0.15	0.30 ± 0.10	0.80 ± 0.05	1.60 ± 0.10	0.40 ± 0.10	0.30 ± 0.10	1.60 ± 0.10
YC164	H : 0.65 ±0.05 H _I : 0.50 ±0.15	0.30 ± 0.15	0.80 ± 0.05	3.20 ± 0.15	0.60 ± 0.10	0.30 ± 0.15	1.60 ± 0.15
YC248	H : 0.45 ±0.05 H _I : 0.30 ±0.05	0.30 ± 0.15	0.50 ± 0.05	4.00 ± 0.20	0.45 ± 0.10	0.40 ± 0.15	1.60 ± 0.15
YC324	H: 1.10 ±0.15 H _I : 0.90 ±0.15	0.50 ± 0.20	1.27 ± 0.05	5.08 ± 0.20	0.60 ±0.10	0.50 ± 0.15	3.20 ±0.20
TC122	H: 0.30 ±0.05	0.25 ± 0.15	0.50 ± 0.05	1.00 ±0.10	0.30 ±0.10	0.25 ± 0.15	1.00 ±0.10
TCI24	H: 0.30 ±0.10	0.20 ±0.10	0.50 ± 0.05	2.00 ±0.10	0.40 ±0.10	0.25 ± 0.10	1.00 ±0.10
TC164	H: 0.50 ±0.15	0.30 ±0.15	0.80 ±0.05	3.20 ± 0.15	0.60 ±0.10	0.30 ± 0.15	1.60 ±0.15
YCI58T	H : 0.45 ± 0.05 H _I : 0.32± 0.05	0.30 ± 0.15	0.64 ± 0.05	3.20 ± 0.20	0.60 ±0.10	0.35 ± 0.15	1.60 ±0.15
YC358L YC358T	H: 1.10±0.15 H _I : 0.90±0.15	0.50 ± 0.15	1.27 ± 0.05	6.40 ± 0.20	0.60 ±0.10	0.50 ± 0.15	3.20 ±0.20

12

ELECTRICAL CHARACTERISTICS

Table 2	2								
TYPE	POWER P ₇₀	OPERATING TEMP. RANGE	MWV	RCOV	DWV	RESISTANCE RANGE & TOLERANCE	T. C. R.	Jumper crit (unit	
YC102	1/32W	-55°C to +125°C	15V	30V	30V	E24 ±5% $10\Omega \le R \le IM\Omega$ E24/E96 ±1% $10\Omega \le R \le IM\Omega$ Jumper < 0.05Ω	- ±200 ppm/°C·	Rated current Max. current	
YC104	1/32W	-55°C to +125°C	12.5V	25V	25V	E24 ±5% $10\Omega \le R \le IM\Omega$ E24/E96 ±1% $10\Omega \le R \le IM\Omega$ Jumper < 0.05Ω	11	Rated current Max. current	
YC122	1/16W	-55°C to +155°C	50V	100V	100V	E24 $\pm 5\%$ $ \Omega \le R \le M\Omega $ E24/E96 $\pm 1\%$ $ \Omega \le R \le M\Omega $ Jumper $< 0.05\Omega$	10.15.110	Rated current Max. current	
YCI24	1/16W	-55°C to +155°C	25V	50V	100V	E24 \pm 5% $ \Omega \le R \le M\Omega $ E24/E96 \pm 1% $ \Omega \le R \le M\Omega $ Jumper $<$ 0.05 Ω	$\Omega \le R \le 10\Omega$ $\pm 250 \text{ ppm/°C}$ $10\Omega \le R \le 1M\Omega$ $\pm 200 \text{ ppm/°C}$	Rated current Max. current	
YC162	1/16W	-55°C to +155°C	50V	100V	100V	E24 \pm 5% $\Omega \le R \le IM\Omega$ E/24/E96 \pm 1% $\Omega \le R \le IM\Omega$ Jumper < 0.05 Ω	- ±200 ррпп С	Rated current Max. current	
YC164	1/16W	-55°C to +155°C	50V	100V	100V	E24 \pm 5% $ \Omega \le R \le M\Omega $ E24/E96 \pm 1% $ \Omega \le R \le M\Omega $ Jumper $<$ 0.05 Ω		Rated current Max. current	
YC248	1/16W	-55°C to +155°C	50V	100V	100V	E24 \pm 5% $10\Omega \le R \le IM\Omega$ E24/E96 \pm 1% $10\Omega \le R \le IM\Omega$ Jumper $< 0.05\Omega$		Rated current Max. current	
YC324	1/8W	-55°C to +155°C	200V	500V	500V	E24 ±5% $ 0\Omega \le R \le M\Omega $ E24/E96 ±1% $ 0\Omega \le R \le M\Omega $	-		
TC122	1/16W	-55°C to +125°C	50V	100V	100V	E24 ±5% $10\Omega \le R \le IM\Omega$ E24/E96 ±1% $10\Omega \le R \le IM\Omega$ Jumper < 0.05Ω	- - ±200 ppm/°C.	Rated current Max. current	1.0
TC124	1/16W	-55°C to +125°C	50V	100V	100V	E24 ±5% $10\Omega \le R \le IM\Omega$ E24/E96 ±1% $10\Omega \le R \le IM\Omega$ Jumper < 0.05Ω	- ±200 ррпії С.	Rated current Max. current	
TC164	1/16W	-55°C to +155°C	50V	100V	100V	E24 ±5% $10\Omega \le R \le IM\Omega$ E24/E96 ±1% $10\Omega \le R \le IM\Omega$ Jumper < 0.05Ω	-	Rated current Max. current	
YCI58T	1/16W	-55°C to +155°C	25V	50V	50V	E24 ±5% 10 Ω ≤ R ≤ 100K Ω	-		
YC358L YC358T	1/16W	-55°C to +155°C	50V	100V	100V	E24 ±5% 10 Ω ≤ R ≤ 330K Ω	_		

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	PACKING STYLE	YC102/ 104	YC/TC 122	YC/TC 124	YC162	YC/TC 164	YC248	YC324	YC158T	YC358L YC358T
Paper taping reel (R)	7" (178mm)	10,000	10,000	10,000	5,000	5,000	5,000		5,000	
	13" (254mm)	50,000	50,000	40,000		20,000			20,000	
Embossed taping reel (K)	7" (178mm)						4,000	4,000		4,000

NOTE

1. For tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

YC102/104, TC122/124 Range:

-55°C to +125°C (Fig.13)

YC122/124/162/164/248/324/158T/358L/358T, TC164 Range:

-55°C to +155°C(Fig.14)

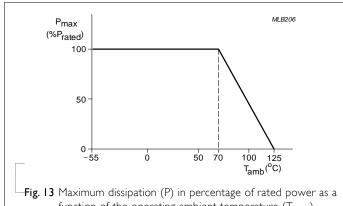
POWER RATING

Each type rated power at 70°C YC102/104 = 1/32 WYC122/124/162/164/248/158T/358L/358T = 1/16 WYC324 = 1/8 WTC122/124/164 = 1/16 W

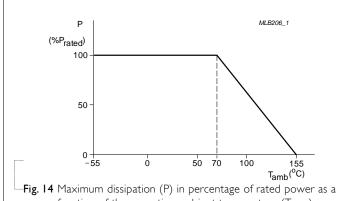
RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(P \times R)}$$


or max. working voltage whichever is less

Where


V=Continuous rated DC or AC (rms) working voltage (V)

P=Rated power (W)

R=Resistance value (Ω)

function of the operating ambient temperature (T_{amb})

function of the operating ambient temperature (T_{amb})

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Life/ Operational Life/ Endurance	MIL-STD-202-method 108 IEC 60115-1 4.25.1 JIS C 5202-7.10	1,000 hours at 70±5 °C applied RCWV 1.5 hours on, 0.5 hour off, still air required	$\pm (2\% + 0.05 \ \Omega)$ < 100 m Ω for Jumper
High Temperature Exposure/ Endurance at Upper Category Temperature	MIL-STD-202-method 108 IEC 60115-1 4.25.3 JIS C 5202-7.11	I,000 hours at maximum operating temperature depending on specification, unpowered No direct impingement of forced air to the parts Tolerances: I25±3 °C	\pm (1%+0.05 Ω) <50 m Ω for Jumper
Moisture Resistance	MIL-STD-202-method 106 IEC 60115-1 4.24.2	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered Parts mounted on test-boards, without condensation on parts Measurement at 24±2 hours after test conclusion	,
Thermal Shock	MIL-STD-202-method 107	-55/+125 °C Note: Number of cycles required is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	\pm (1%+0.05 Ω) <50 mΩ for Jumper
Short Time Overload	MIL-R-55342-para 4.7.5 IEC60115-1 4.13	2.5 times RCWV or maximum overload voltage whichever is less for 5 sec at room temperature	$\pm (2\% + 0.05 \ \Omega)$ <50 m Ω for Jumper No visible damage
Board Flex/ Bending	IEC60115-1 4.33	Device mounted on PCB test board as described, only I board bending required 3 mm bending Bending time: 60±5 seconds Ohmic value checked during bending	\pm (1%+0.05 Ω) <50 m Ω for Jumper No visible damage

Chip Resistor Surface Mount YC/TC SERIES 102 to 358

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	J-STD-002 test	Electrical Test not required	Well tinned (≥95% covered)
-		Magnification 50X	No visible damage
		SMD conditions:	
		I st step: method B, aging 4 hours at 155 °C dry heat	
		2 nd step: leadfree solder bath at 245±3 °C	
		Dipping time: 3±0.5 seconds	
- Leaching	J-STD-002 test	Leadfree solder, 260 °C, 30 seconds immersion time	No visible damage
- Resistance to	MIL-STD-202-method 210	Condition B, no pre-heat of samples	±(1%+0.05 Ω)
Soldering Heat		Leadfree solder, 260 °C, 10 seconds	$<$ 50 m Ω for Jumper
		immersion time	No visible damage
		Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	Ü
Biased Humidity	AEC-Q200 Test 7	I,000 hours; 85 °C / 85% RH	± (5.0%+0.05 Ω)
	MIL-STD-202-Method 103	10% of operating power	,
		Measurement at 24± 4 hours after test conclusion.	
		conclusion.	

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 9	Feb.19, 2019	-	- Update H dimension for YC124
Version 8	Dec. 24. 2018	-	- Update AEC-Q200 qualified
Version 7	Aug. 22, 2017	-	- Correct the typo for YC158T/358L/358T, Marking, "240" is 240hm
Version 6	Jun. 1, 2017	-	- Update ordering information for networks YC158T/YC358L/YC358T
Version 5	Feb. 14, 2017	-	- Update YC158 and 358 part number to YC158T , YC358L and YC358T
Version 4	Dec. 22, 2016	-	- Delete YC102 default code L type
Version 3	Apr. 29, 2016	-	- Update YC series and TC164 dimension
Version 2	Dec. 11, 2015	-	- Update Operating Temperature
Version I	Feb. 04, 2015	-	- Update YC102 to flat type
Version 0	Nov. 14, 2014	-	- First issue of this specification

[&]quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resistor Networks & Arrays category:

Click to view products by Yageo manufacturer:

Other Similar products are found below:

CSC6600552K000B8768 CSC06A0122K0GEJ CSC08A01470KGEK M8340105K1002FGD03 M8340106MA010FHD03

M8340107K1471FGD03 M8340108K1001FCD03 M8340108K2402GGD03 M8340108K3240FGD03 M8340108K3242FGD03

M8340108K3322FCD03 M8340108K4991FGD03 M8340108K6202GGD03 M8340109K2002FCD03 M8340109M4701GCD03 EXB
24N121JX EXB-24N330JX EXB-24N470JX EXB-A10E102J EXB-A10E104J 744C083101JTR EXB-U14360JX EXB-U18240JX EXB
U18390JX 745X101103JP MDP1603100KGE04 PRA100I2-1KBWNW GUS-SS4-BLF-01-1002-G ACAS06S0830339P100

ACAS06S0830343P100 ACAS06S0830344P100 RM2012A-102/104-PBVW10 RM2012A-102503-PBVW10 RM2012A-502104-PBVW10

RM3216B-102302-PBVW10 L091S102LF ACAS06S0830341P100 ACAS06S0830342P100 ACAS06S0830345P100 EXB-14V300JX EXB
U14220JX EXB-U14470JX EXB-U18330JX EXB-V4N100JV EXB-V8V220GV PRA100I2-10KBWN PRA100I4-10KBWN

CSC09A014K70JEK M8340102M4701JAD04 M8340105K1002GGD03