

YJD80N03A

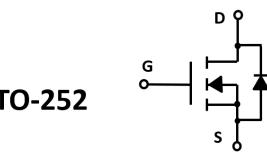
N-Channel Enhancement Mode Field Effect Transistor

I_D 80A

R_{DS(ON)}(at V_{GS}=10V)
 R_{DS(ON)}(at V_{GS}=4.5V)
 <6.0mohm

30V

• 100% UIS Tested


• 100% ∇V_{DS} Tested

General Description

• Trench Power LV MOSFET technology

• Excellent package for heat dissipation

•High density cell design for low R_{DS(ON)}

Applications

- High current load applications
- Load switching
- Hard switched and high frequency circuits

Uninterruptible power supply

■ Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

	Parameter	Symbol	Limit	Unit	
Drain-source Voltage		V _{DS}	30	V	
Gate-source Voltage		V _{GS}	±20	V	
Drain Current	T _C =25℃		80 56	А	
Diam Current	rrent I _D T _C =100°C	56	A		
Pulsed Drain Current ^A		I _{DM}	190	Α	
Total Power Dissipation	T _C =25℃	P _D	30 ±20 80 56	W	
Total Fower Dissipation	T _C =100°C	FD.		W	
Single Pulse Avalanche Energ	le Pulse Avalanche Energy ^B		225	mJ	
Thermal Resistance Junction-	o-Case ^c	R _{θJC}	2.8	°C/W	
Junction and Storage Tempera	ature Range	T _J ,T _{STG}	-55∼+175	$^{\circ}$ C	

■ Ordering Information (Example)

PREFERED P/N	PACKING CODE	Marking	MINIMUM PACKAGE(pcs)	INNER BOX QUANTITY(pcs)	OUTER CARTON QUANTITY(pcs)	DELIVERY MODE	
YJD80N03A	F2	YJD80N03A	2500	1	25000	13" reel	

YJD80N03A

■ Electrical Characteristics (T_J=25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units		
Static Parameter								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0V, I _D =250μA	30			V		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V			1	μΑ		
Gate-Body Leakage Current	I _{GSS}	V_{GS} = ± 20 V, V_{DS} =0V			±100	nA		
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}, I_{D}=250\mu A$	1.0	1.5	2.5	V		
Olatia Davia Oceana Oc. Davidson		V _{GS} = 10V, I _D =15A		3.6	4.5	mΩ		
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} = 4.5V, I _D =15A		4.7	6.0			
Diode Forward Voltage	V_{SD}	I _S =20A,V _{GS} =0V		0.8	1.2	V		
Maximum Body-Diode Continuous Current	Is				80	А		
Dynamic Parameters								
Input Capacitance	C _{iss}			2504		pF		
Output Capacitance	Coss	V _{DS} =15V,V _{GS} =0V,f=1MHZ		323				
Reverse Transfer Capacitance	C _{rss}			283				
Switching Parameters								
Total Gate Charge	Qg			54				
Gate-Source Charge	Q_{gs}	V _{GS} =10V,V _{DS} =15V,I _D =20A		8.5		nC		
Gate-Drain Charge	Q_{gd}			10.2				
Reverse Recovery Charge	Q _{rr}	1 000 Fills 4000 for		6.5				
Reverse Recovery Time	t _{rr}	I _F =20A, di/dt=100A/us		15.1				
Turn-on Delay Time	t _{D(on)}			11.4				
Turn-on Rise Time	t _r	V 40VV 20V L 0A D 00		20.4		ns		
Turn-off Delay Time	$t_{D(off)}$	V_{GS} =10V, V_{DD} =20V, I_{D} =2A, R_{GEN} =3 Ω		41				
Turn-off fall Time	t _f			25				

A. Pulse Test: Pulse Width \leq 300us, Duty cycle \leq 2%.

B. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design, while $R_{\theta JA}$ is determined by the board design. The maximum rating presented here is based on mounting on a 1 in 2 pad of 2oz copper.

■ Typical Performance Characteristics

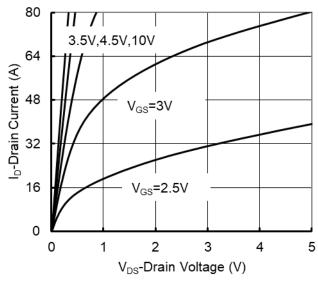


Figure 1. Output Characteristics

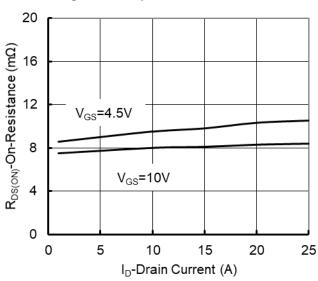


Figure 3. On-Resistance vs. Drain Current and Gate Voltage

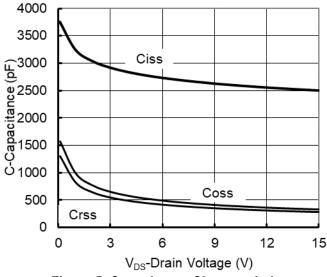
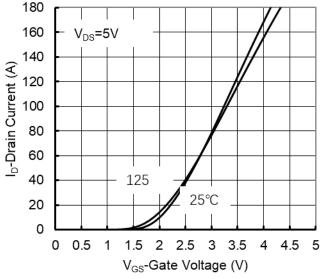



Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

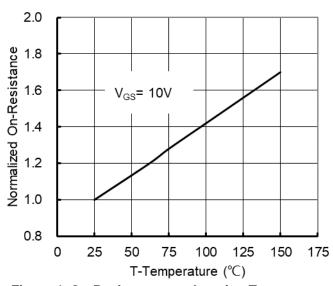


Figure 4. On-Resistance vs. Junction Temperature

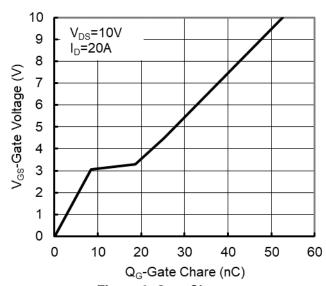
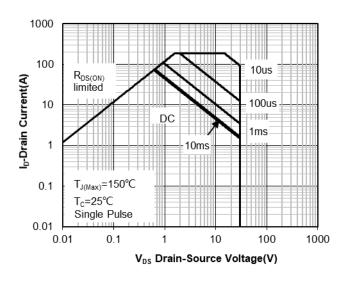
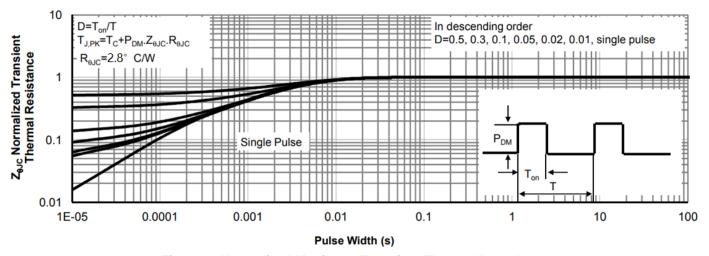
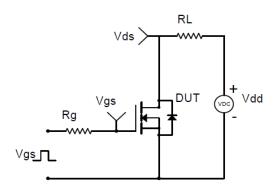
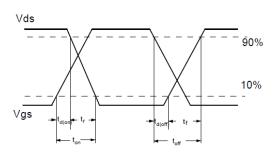



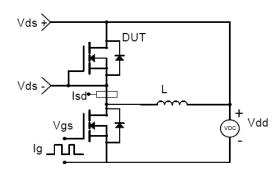
Figure 6. Gate Charge

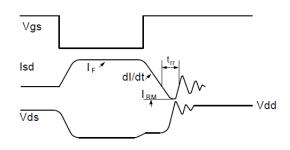
100 $R_{\theta JC}$ =2.8°C/W 80 D-Drain Curent (A) 60 40 20 0 25 50 75 100 125 175 0 150 T_C-Case Temperature (°C)

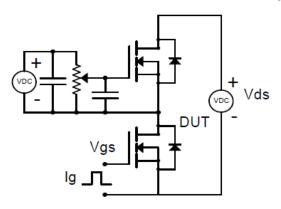
Figure 7. Safe Operation Area

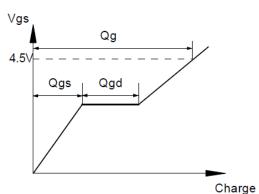
Figure 8. Maximum Continuous Drain Current vs Case Temperature

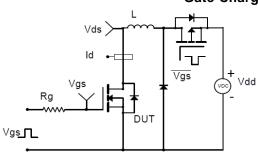




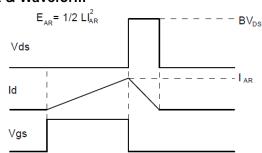

Figure 9. Normalized Maximum Transient Thermal Impedance



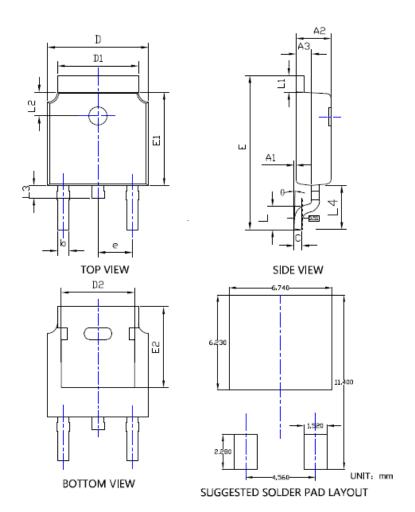



Resistive Switching Test Circuit & Waveforms




Diode Recovery Test Circuit & Waveforms

Gate Charge Test Circuit & Waveform



Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

■TO-252 Package information

	DIMENSIONS						
CVMDDI	INCHES			Millimeter			
SYMBOL	MIN.	NDM.	MAX.	MIN.	NDM.	MAX	
A1	0.000		0.008	0.000		0.200	
A2	0.087	0.091	0.094	2.200	2.300	2.400	
A3	0.035	0.039	0.043	0.900	1.000	1.100	
lo	0.026	0.030	0.034	0.660	0.760	0.860	
С	0.018	0.020	0.023	0.460	0.520	0.580	
D	0.256	0.260	0.264	6,500	6.600	6.700	
D1	0.203	0,209	0.215	5.150	5.300	5.450	
D2	0.181	0.189	0.195	4,600	4.800	4.950	
E	0.390	0.398	0.406	9.900	10.100	10.300	
El	0.236	0.240	0.244	6.000	6.100	6.200	
ES	0.203	0.209	0.215	5.150	5.300	5.450	
6	0.090BSC			2.286BSC			
L	0.049	0.059	0.069	1250	1500	1.750	
L1	0.035		0.050	0.900		1.270	
L2	0.055		0.075	1,400		1,900	
L3	0.240	0.310	0.039	0,600	0.800	1000	
L4	0.114REF			2.900REF			
8	0*		10*	0*		10°	

NOTE:

- 1.PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.
- 2.TOLERANCE 0.1mm UNLESS OTHERWISE SPECIFIED.
- 3.THE PAD LAYOUT IS FOR REFERENCE PURPOSES ONLY.

YJD80N03A

Disclaimer

The information presented in this document is for reference only. Yangzhou Yangjie Electronic Technology Co., Ltd. reserves the right to make changes without notice for the specification of the products displayed herein to improve reliability, function or design or otherwise.

The product listed herein is designed to be used with ordinary electronic equipment or devices, and not designed to be used with equipment or devices which require high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), Yangjie or anyone on its behalf, assumes no responsibility or liability for any damages resulting from such improper use of sale.

This publication supersedes & replaces all information previously supplied. For additional information, please visit our website http:// www.21yangjie.com, or consult your nearest Yangjie's sales office for further assistance.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Yangjie manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ NTNS3A92PZT5G IRFD120 IRFF430 JANTX2N5237 2N7000
AOD464 2SK2267(Q) 2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A 751625C
IPS70R2K0CEAKMA1 BSF024N03LT3 G PSMN4R2-30MLD TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7
EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969 NTE6400A DMC2700UDMQ-7
DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1
DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 IPSA70R950CEAKMA1 IPSA70R2K0CEAKMA1 STU5N65M6
C3M0021120D DMN6022SSD-13