

Features

- Monolithc structure for highly reliable surface mount applications.
- Excellent solderability and high heat resistance for either flow or reflow soldering.
- No cross coupling between inductors due to magnetic shield. Ideal for high density installation.
- Operating temperature:- 40° C ~ +85°C.

Applications

 Prevention of electromagnetic interference to signals on the secondary side of electric equipment

Product Identification

- (1): Type
- (2): Dimensions
- (3): Inductance value
- (4): Inductance Tolerance; N=±30%,M=±20%, K=±10%

Tel:0755-27803896 Fax:0755-27803897

Shapes and Dimensions (Unit: mm)

TYPE	L	w	Т	Α	
YL160808 [0603]	1.60±0.20	0.80±0.20	0.80±0.20	0.30±0.20	

YL1608 Series

Part Number	Inductance	Q Min.	Test Freq.	Min.SRF	DCR MAX.	Max.Rated
Part Number	(uH)		(MHz)	(MHz)	(Ω)	Current (mA)
YL160808-47N□	0.047	10	50	260	0.30	50
YL160808-68N□	0.068	10	50	250	0.30	50
YL160808-82N□	0.082	10	50	245	0.30	50
YL160808-R10□	0.100	15	25	240	0.50	50
YL160808-R12□	0.120	15	25	205	0.50	50
YL160808-R15□	0.150	15	25	180	0.60	50
YL160808-R18□	0.180	15	25	165	0.60	50
YL160808-R22□	0.220	15	25	150	0.80	50
YL160808-R27□	0.270	15	25	136	0.80	80
YL160808-R33□	0.330	15	25	125	0.85	35
YL160808-R39□	0.390	15	25	110	1.00	35
YL160808-R47□	0.470	15	25	105	1.35	35
YL160808-R56□	0.560	15	25	95	1.55	35
YL160808-R68□	0.680	15	25	90	1.70	35

http://www.yjycoin.com

■ YL1608 Series

Part Number	Inductance	Q Min.	Test Freq.	Min.SRF	DCR MAX.	Max.Rated	
r art Namber	(uH)	og minn.	(MHz)	(MHz)	(Ω)	Current (mA)	
YL160808-R82□	0.820	15	25	85	2.10	35	
YL160808-1R0□	1.0	35	10	75	0.60	25	
YL160808-1R1□	1.1	35	10	75	0.60	25	
YL160808-1R2□	1.2	35	10	65	0.80	25	
YL160808-1R5□	1.5	35	10	60	0.80	25	
YL160808-1R8□	1.8	35	10	55	0.95	25	
YL160808-2R2□	2.2	35	10	50	1.15	15	
YL160808-2R7□	2.7	35	10	45	1.35	15	
YL160808-3R3□	3.3	35	10	40	1.55	15	
YL160808-3R9□	3.9	35	10	35	1.70	15	
YL160808-4R7□	4.7	35	10	33	2.10	15	
YL160808-5R6□	5.6	35	4	22	1.55	5	
YL160808-6R8□	6.8	35	4	20	1.70	5	
YL160808-8R2□	8.2	35	4	18	2.10	5	
YL160808-100□	10	30	2	17	1.85	3	
YL160808-120□	12	30	2	15	2.10	3	
YL160808-150□	15	20	1	14	1.70	1	
YL160808-180□	18	20	1	13	1.85	1	
YL160808-220□	22	20	1	11	2.10	1	
YL160808-270□	27	20	1	10	2.75	1	
YL160808-330□	33	20	1	9	2.95	1	

Reliability test

Items	Requirements	Test Methods and Remarks
Operating	·	
Temperature		-40℃ to + 85℃
Range		
Storage		
Temperature		-40°C to + 85°C
Range		
Terminal	No removal or split of the termination	① Solder the inductor to the testing jig(glass epoxy
Strength	or other defects shall occur	board shown as the following figure)using eutectic
		solder. Then apply a force in the direction of the
		arrow.
		② 2N force for 0603 series.
		③ 5N force for 1005 and 1608 series.
		④ 10N force for 2012 3216 3225 4532 series.
		S Keep time :10±1s.
		Speed:1.0mm/s.
		Chip 2N/5N/10N/10±1s Speed: 1.0mm/s Glass Epoxy Board Mounting Pad
Resistance to Flexure	No visible mechanical damage.	Solder the inductor to the test jig(glass epoxy board) using a eutectic solder. Then apply a force in the direction of the arrow shown as the following
		figure.
		② Flexure:2mm.
		③ Pressurizing Speed:0.5mm/sec.
		④ Keep time:≥30 sec.
	45[1.772]	30 10 Flexure:2mm

http://www.yjycoin.com

■ Reliability test

Items	Requirements	Test Methods and Remarks			
Vibration	•	Solder the inductor to the testing jig using eutectic			
Vibration	 No visible mechanical damage. Inductance change: Within 	solder.			
	±10%.	② The inductor shall be subjected to a simple			
	③ Q factor change: Within	harmonic motion having total amplitude of 1.5 mm, the			
	±30%.	frequency being varied uniformly between the			
		approximate limits of 10 and 55 Hz.			
		③ The frequency range from 10 to 55 Hz and return to			
		10 Hz shall be traversed in approximately 1 minute.			
		This motion shall be applied for a period of 2 hours in			
		each 3mutually perpendicular directions (total of 6			
		hours).			
Dropping	① No visible mechanical damage.	Drop chip inductor 10 times on a concrete floor from a			
	② Inductance change:Within	height of 100 cm.			
	±20%.				
	③ Q factor change: Within				
	±30%.	T 1000 1 0700			
Temperature	Inductance change should be	Temperature range: -40°C to +85°C			
	within ±20% of initial value	Reference temperature:+20°C			
Coldorobility	measuring at 20°C.	Colder temperature 240 2°C			
Solderability	① No visible mechanical damage.	 Solder temperature: 240±2℃. Duration: 3 sec. 			
	② Wetting shall exceed 95% coverage.	③ Solder: Sn/3.0Ag/0.5Cu.			
	coverage.	4 Flux: 25% Resin and 75% ethanol in weight.			
Resistance	No visible mechanical damage.	① Solder temperature: 260±3℃.			
to Soldering	② Wetting shall exceed 95%	② Duration: 5 sec.			
Heat	coverage.	③ Solder: Sn/3.0Ag/0.5Cu.			
	③ Inductance change:Within	④ Flux: 25% Resin and 75% ethanol in weight.			
	±10%.	⑤ The chip shall be stabilized at normal condition for			
	④ Q factor change: Within	1~2 hours before measuring.			
	±30%.				
Thermal	① No visible mechanical damage.	① Temperature and time:			
Shock	② Inductance change: Within	-40 °C for 30±3 min \rightarrow 85 °C for 30±3 min.			
	±10%.	② Transforming interval: Max.20 sec.			
	③ Q factor change: Within	③ Tested cycle: 100 cycles.			
	±30%.	The chip shall be stabilized at normal condition for			
		1~2 hours before measuring. 30 min. 30 min.			
		85°C 30 min. 30 min.			
		Ambient 30 min.			
		Temperature -40 °C 20sec. (max.)			
		••			

Reliability test

Items	Requirements	Test Methods and Remarks
Resistance to	① No visible mechanical damage.	① Temperature: -40±2℃.
Low	② Inductance change: Within	② Duration: 1000+24 hours.
Temperature	±10%.	③ The chip shall be stabilized at normal condition for
	③ Q factor change: Within	1~2 hours before measuring.
	±30%.	
Resistance to	① No visible mechanical damage.	① Temperature: 85±2℃.
High	② Inductance change: Within	② Duration: 1000+24 hours.
Temperature	\pm 10%.	③ The chip shall be stabilized at normal condition for
	③ Q factor change: Within	1~2 hours before measuring.
	±30%.	
Damp Heat	① No visible mechanical damage.	① Temperature: 60±2℃.
(Steady	② Inductance change: Within	② Humidity: 90% to 95% RH.
States)	±10%.	③ Duration: 1000+24 hours.
	③ Q factor change: Within	4 The chip shall be stabilized at normal condition for
	±30%.	1~2 hours before measuring.
Loading	① No visible mechanical damage.	① Temperature: 60 ± 2°C
Under Damp	② Inductance change: Within	① Temperature: 60 ± 2 °C. Humidity: 90% to 95% RH.
Heat	\pm 10% for inductance \leq 12 μ H,	③ Duration: 1000+24 hours.
	Within \pm 15% for inductance \geqslant	Applied current: Rated current.
	15 µ H.	⑤ The chip shall be stabilized at normal condition for
	③ Q factor change: Within	1~2 hours before measuring.
	±30%.	
Loading at	 No visible mechanical damage. 	① Temperature: 85 ± 2°
High	② Inductance change: Within ±	 ① Temperature: 85±2℃. ② Duration: 1000+24 hours.
Temperature	10% for inductance \leq 12 μ H,	③ Applied current: Rated current.
(Life Test)	Within \pm 15% for inductance \geqslant	④ The chip shall be stabilized at normal condition for
	15 µ H.	1~2 hours before measuring.
	③ Q factor change: Within	
	±30%.	

- 6 -

■ Taping Dimensions(Unit:mm)

TYPE	Chip Thickness	W	A	В	D	Р	K Max	T Max	MPQ
YL160808	0.80	8.0	1.00	1.80	3.50	4.0	1.10	0.30	4000

■ Reel Dimensions(Unit:mm)

TYPE	W W1		Α	В	С	D
VI. Outine	178±2.0	8.40±1.50	4.3±0.20	5.0±0.10	3.0±0.10	58±2.0
YL Series	178±2.0	12.40±1.50	4.3±0.20	5.0±0.10	3.0±0.10	58±2.0

- 7 -

Leader and Blank portion

- 1. Missing chips number within 0.1% of the number per reel or 1pcs, whichever is greater, and are not continuous.
- 2. The top tape and bottom tape shall not protrude beyond the edges of the tape and shall not cover sprocket hole.
- 3. Cumulative tolerance of sprocket holes, 10 pitches: ±0.3mm.
- 4. Peeling off force: 10gf to 100gf in the direction show below for 8mm carrier tapes and 10gf to 130gf for 12mm to 56mm wide carrier tapes.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Fixed Inductors category:

Click to view products by YJYCOIN manufacturer:

Other Similar products are found below:

CR32NP-151KC CR32NP-180KC CR32NP-181KC CR32NP-1R5MC CR32NP-390KC CR32NP-3R9MC CR32NP-680KC CR32NP-680KC CR32NP-680KC CR32NP-680KC CR32NP-680KC CR32NP-820KC CR32NP-8R2MC CR43NP-390KC CR43NP-560KC CR43NP-680KC CR54NP-181KC CR54NP-470LC CR54NP-820KC CR54NP-8R5MC 70F224AI MGDQ4-00004-P MHL1ECTTP18NJ MHQ1005P10NJ MHQ1005P1N0S MHQ1005P2N4S MHQ1005P3N6S MHQ1005P5N1S MHQ1005P8N2J PE-51506NL PE-53601NL PE-53602NL PE-53630NL PE-53824SNLT PE-92100NL PG0434.801NLT PG0936.113NLT 9220-20 9310-16 PM06-2N7 PM06-39NJ A01TK 1206CS-471XJ HC2LP-R47-R HC2-R47-R HC3-2R2-R HCF1305-3R3-R 1206CS-151XG RCH664NP-140L RCH664NP-4R7M RCH8011NP-221L RCP1317NP-332L RCP1317NP-391L RCR1010NP-470M