Description

The $2842 / 43 / 44 / 45$ are fixed frequency current mode PWM controller．They are specially designed for OFF－Line and DC to DC converter applications with a minimal external components．Internally implemented circuits include a trimmed oscillator for preci－ se duty cycle control，a temperature compensated reference，high gain error amplifier，current sensing comparator，and a high current totempole output ideally suited for driving a power MOSFET．Protection circuitry includes built undervoltage lockout and current limiting．The 2842 and 2844 have UVLO thresholds of 16 V （on）and 10 V （off）．The corresponding thresholds for the $2843 / 45$ are 8.4 V （on）and 7.6 V （off）．The 2842 and 2843 can operate within 100% duty cycle．
The 2844 and 2845 can operate within 50% duty cycle．
The 284X has Start－Up Current 0．5mA（typ）．

Features

－Low Start－Up and Operating Current
－High Current Totem Pole Output
－Undervoltage Lockout With Hysteresis
－Operating Frequency Up To 500 KHz

Pin Connection

Block diagram
（toggle flip flop used only in 2844，2845）

Absolute Maximum Ratings

Symbol	Parameter	Maximum	Units
V_{CC}	Supply Voltage（low impedance source）	30	V
I_{O}	Output Current	± 1	A
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage（Analog Inputs pins 2，3）	-0.3 to 5.5	V
$\mathrm{I}_{\mathrm{SINK}(\mathrm{E} . \mathrm{A})}$	Error Amp Output Sink Current	10	mA
Po	Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	-65 to150	W
Tstg	Storage Temperature Range	${ }^{\circ} \mathrm{C}$	
T_{L}	Lead Temperature（soldering 5 sec．）	260	${ }^{\circ} \mathrm{C}$
TA^{C}	Operating Ambient Temperature	-25 to +85	${ }^{\circ} \mathrm{C}$

Electrical characteristics
${ }^{*} \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ，unless otherwise specified）

Characteristics	Symbol	Test Conditions	Min	Typ	Max	Units
Reference Section						
Reference Output Voltage	$V_{\text {ReF }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {REF }}=1 \mathrm{~mA}$	4.9	5.0	5.1	V
Line Regulation	$\Delta \mathrm{V}_{\text {REF }}$	$12 \mathrm{~V} \leqslant \mathrm{Vcc} \leqslant 25 \mathrm{~V}$		6.0	20	mV
Load Regulation	$\Delta \mathrm{V}_{\text {REF }}$	$1 \mathrm{~mA} \leqslant \mathrm{I}_{\text {ReF }} \leqslant 20 \mathrm{~mA}$		6.0	25	
Short Circuit Output Current	Isc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		－100	－180	mA
Oscillator Section						
Oscillation Frequency	f	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	47	50	57	KHz
			47	52	57	
Frequency Change with Voltage	$\Delta \mathrm{f} / \Delta \mathrm{V}_{\text {cc }}$	$12 \mathrm{~V} \leqslant \mathrm{Vcc} \leqslant 25 \mathrm{~V}$		0.05	1.0	\％
Oscillator Amplitude	$\mathrm{V}_{\text {（OSC）}}$	（peak to peak）		1.6		V
Error Amplifier Section						
Input Bias Current	$\mathrm{I}_{\text {BIAS }}$	$\mathrm{V}_{\mathrm{FB}}=3 \mathrm{~V}$		－0．1	－2	$\mu \mathrm{A}$
Input Voltage	$\mathrm{V}_{\text {I（E．A）}}$	$\mathrm{V}_{\text {pin1 }}=2.5 \mathrm{~V}$	2.42	2.5	2.58	V
Open Loop Voltage Gain	Avol	$2 \mathrm{~V} \leqslant \mathrm{~V}_{0} \leqslant 4 \mathrm{~V}$	65	90		dB
Power Supply Rejection Ratio	PSRR	$12 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 25 \mathrm{~V}$	60	70		
Output Sink Current	$\mathrm{I}_{\text {SINK }}$	$\mathrm{V}_{\text {pin2 }}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {pin1 }}=1.1 \mathrm{~V}$	2	7		mA
Output Source Current	$\mathrm{I}_{\text {SOURCE }}$	$\mathrm{V}_{\text {pin2 }}=2.3 \mathrm{~V}, \mathrm{~V}_{\text {pin1 }}=5 \mathrm{~V}$	－0．5	－1．0		mA
High Output Voltage	Voh	$\mathrm{V}_{\text {pin2 }}=2.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{~K} \Omega$ to GND	5.0	6.0		V
Low Output Voltage	Vol	$\mathrm{V}_{\text {pin2 }}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{~K} \Omega$ to PIN 8		0.8	1.1	
Current Sense Section						
Gain	G_{v}	（Note 1 \＆2）	2.85	3.0	3.15	V／V
Maximum Input Signal	$\mathrm{V}_{\text {I（MAX }}$	$\mathrm{V}_{\text {pin1 }}=5 \mathrm{~V}$（Note1）	0.9	1.0	1.1	V
Supply Voltage Rejection	SVR	$12 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 25 \mathrm{~V}$（Note 1）		70		dB
Input Bias Current	$\mathrm{I}_{\text {BIAS }}$	$\mathrm{V}_{\text {pin3 }}=3 \mathrm{~V}$		－3．0	－10	$\mu \mathrm{A}$
Output Section						
Low Output Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$		0.08	0.4	V
		$\mathrm{I}_{\text {SINK }}=200 \mathrm{~mA}$		1.4	2.2	
High Output Voltage	V_{OH}	$\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$	13	13.5		
		$\mathrm{I}_{\text {SINK }}=200 \mathrm{~mA}$	12	13.0		
Rise Time	tR	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$（Note 3）		45	150	nS
Fall Time	t	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$（Note 3）		35	150	
Undervoltage Lockout Section						
Start Theshold	$\mathrm{V}_{\text {TH（ST）}}$	2842／44	14.5	16.0	17.5	V
		2843／45	7.8	8.4	9.0	
Min．Operating Voltage （After Turn On）	$\mathrm{V}_{\text {OPR（min）}}$	2842／44	8.5	10	11.5	V
		2843／45	7.0	7.6	8.2	
PWM Section						
Max．Duty Cycle	$\mathrm{D}_{\text {（MAX）}}$	2842／43	95	97	100	\％
		2844／45	47	48	50	
Min．Duty Cycle	$\mathrm{D}_{\text {（MAX）}}$				0	
Total Standby Current						
Start－Up Current	$\mathrm{I}_{\text {ST }}$	284X		0.05		mA
Operating Supply Current	I_{CC}（OPR）	$\mathrm{V}_{\text {pin3 }}=\mathrm{V}_{\text {pin2 }}=0 \mathrm{~V}$		13	17	
Zener Voltage	V_{z}	$\mathrm{I}_{\mathrm{CC}}=25 \mathrm{~mA}$	30	38		V

＊－Adjust V_{cc} above the start threshold before setting it to 15 V
Note 1：Parameter measured at trip point of latch with $\mathrm{V}_{\text {pin2 }}=0$ ．
Note 2：Gain defined as $A=\Delta \mathrm{V}_{\text {pin } 1} / \Delta \mathrm{V}_{\text {pin } 3} ; 0 \leq \mathrm{V}_{\text {pin3 }} \leq 0.8 \mathrm{~V}$ ．
Note 3：These parameters，although guaranteed，are not 100% tested in production．

Pin functions

\mathbf{N}	Function	
1	COMP	This pin is the Error Amplifier output and is made for loop compensation．
2	$\mathrm{~V}_{\text {FB }}$	This is the inverting input of the Error Amplifier．It is normally connected to the switching power supply output through a resistor divider．
3	$\mathrm{I}_{\text {SENSE }}$	A voltage proportional to inductor current is connected to this input．The PWM uses this information to terminate the output switch conduction．
4	$\mathrm{R}_{T} / \mathrm{C}_{T}$	The oscillator frequency and maximum Output duty cycle are programmed by connecting resistor R_{T} to $\mathrm{V}_{\text {ref }}$ and capacitor C_{T} to ground．
5	GROUND	This pin is the combined control circuitry and power ground．
6	OUTPUT	This output directly drives the gate of a power MOSFET．Peak currents up to 1A are sourced and sink by this pin．
7	$\mathrm{~V}_{C C}$	This pin is the positive supply of the integrated circuit．
8	$\mathrm{~V}_{\text {ref }}$	This is the reference output．It provides charging current for capacitor C_{T} through resistor R_{T}.

Application information

Figure 1．Error Amp Configuration

Figure 2．Undervoltage Lockout

Figure 3．Current Sense Circuit

Figure 4．Slope Compensation Techniques

SCR must be selected for a holding current of less than 0.5 mA ． The simple two transistor circuit can be used in place of the SCR as shown．

Figure 5．Latched Shutdown

Figure 6．Error Amplifier Compensation

Figure 7．External Clock Synchronization

Figure 8．Soft－Start Circuit

Typical Performance Characteristics

Figure 1．Timing Resistor vs．Oscillator Frequency

Figure 3．Maximum Output Duty Cycle vs． Timing Resistor（UC3842／43）

Figure 5．Current Sense Input Threshold vs． Error Amp Output Voltage

Figure 2．Output Dead－Time vs．Oscillator Frequency

Figure 4．Error Amp Open－Loop Gain vs． Frequency

Figure 6．Reference Short Circuit Current vs． Temperature

Figure 7．Output Saturation Voltage vs．Load Current $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 8．Supply Current vs．Supply Voltage

Figure 9．Oscillator and Output Waveforms

SOP－8

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
C	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
e	$1.270($ BSC $)$		$0.050(\mathrm{BSC})$	
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

Ordering information

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Youtai manufacturer:
Other Similar products are found below :
FAN53610AUC33X FAN53611AUC123X MP2374DS-LF-Z EN6310QA NCP81108MNTXG NCP81109BMNTXG FAN48610BUC45X FAN48617UC50X R3 KE177614 EP5358LUA MPQ4423GQ-AEC1-Z FAN53611AUC12X MAX809TTR NCV891234MW50R2G AST1S31PUR NCP81103MNTXG NCP81203PMNTXG NCP81208MNTXG NCP81109GMNTXG SCY1751FCCT1G

NCP81109JMNTXG MP2161AGJ-Z NCP81241MNTXG MP2388GQEU-Z MPQ4481GU-AEC1-P MP8756GD-P MPQ2171GJ-P IR3888MTRPBFAUMA1 MPQ2171GJ-AEC1-P MP2171GJ-P NCV1077CSTBT3G MP28160GC-Z MPM3509GQVE-AEC1-P LTM4691EV\#PBF XCL207A123CR-G XDPE132G5CG000XUMA1 XDPE12284C0000XUMA1 LTM4691IV\#PBF MP5461GC-P MP28301GG-P MIC23356YFT-TR ISL95338IRTZ MP3416GJ-P BD9S201NUX-CE2 ISL9113AIRAZ-T MP5461GC-Z MPQ2172GJ-AEC1-Z MPQ4415AGQB-Z MPQ4590GS-Z

