

UMW UC3842/43/44/45

Description

The 3842/43/44/45 are fixed frequency current mode PWM controller. They are specially designed for OFF-Line and DC to DC converter applications with a minimal external components. Internally implemented circuits include a trimmed oscillator for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current totempole output ideally suited for driving a power MOSFET. Protection circuitry includes built undervoltage lockout and current limiting. The 3842 and 3844 have UVLO thresholds of 16 V (on) and 10 V (off). The corresponding thresholds for the 3843/45 are 8.4V (on) and 7.6V (off). The 3842 and 3843 can operate within 100% duty cycle. The 3844 and 3845 can operate within 50% duty cycle.

The 384X has Start-Up Current 0.17mA (typ).

Features

- Low Start-Up and Operating Current
- High Current Totem Pole Output
- Undervoltage Lockout With Hysteresis
- Operating Frequency Up To 300KHz (384X)
 - 500KHz (384X)

Pin Connection

Absolute Maximum Ratings

Symbol	Parameter	Maximum	Units
V _{cc}	Supply Voltage (low impedance source)	30	V
Ιo	Output Current	±1	А
VI	Input Voltage (Analog Inputs pins 2,3)	-0.3 to 5.5	V
I _{SINK (E.A)}	Error Amp Output Sink Current	10	mA
Po	Power Dissipation (T _A =25 ^o C)	1	W
Tstg	Storage Temperature Range	-65 to150	0°
TL	Lead Temperature (soldering 5 sec.)	260	°C.

UMW® Pg 3 0 k

UMW UC3842/43/44/45

Electrical characteristics

Characteristics	Symbol Test Conditions		Conditions	Min	Тур	Max	Units
Reference Section	•			•			
Reference Output Voltage	VREF	$T_{J} = 25^{\circ}C, I_{REF} = 1 \text{ mA}$		4.9	5.0	5.1	V
Line Regulation	ΔV_{REF}	$12V \leq Vcc \leq 25V$			6.0	20	mV
Load Regulation	ΔV_{REF}	$1 \text{ mA} \leq I_{\text{REF}} \leq 20 \text{mA}$			6.0	25	1
Short Circuit Output Current	lsc	$T_A = 25^{\circ}C$			-100	-180	mA
Oscillator Section	•						
	f	$T_{J} = 25^{\circ}C$	384X	47	50	57	KHz
Oscillation Frequency			384X	47	52	57	
Frequency Change with Voltage	Δf/ΔV _{CC}	$12V \leq V_{CC} \leq 25V$			0.05	1.0	%
Oscillator Amplitude	V _(OSC)	(peak to peak)			1.6		V
Error Amplifier Section				•			
Input Bias Current	I _{BIAS}	V _{FB} =3V			-0.1	-2	μA
Input Voltage	V _{I(E.A)}	V _{pin1} = 2.5V		2.42	2.5	2.58	V
Open Loop Voltage Gain	A _{VOL}	$2V \leqslant V_0 \leqslant 4V$		65	90		dD
Power Supply Rejection Ratio	PSRR	$12V \leq V_{CC} \leq 25V$		60	70		aв
Output Sink Current	I _{SINK}	$V_{pin2} = 2.7V, V_{pin1}$	1 = 1.1V	2	7		mA
Output Source Current	ISOURCE	$V_{pin2} = 2.3V, V_{pin1} = 5V$		-0.5	-1.0		mA
High Output Voltage	Vон	$V_{\text{pin2}} = 2.3 \text{V}, \text{R}_{\text{L}} = 15 \text{K}\Omega \text{ to GND}$		5.0	6.0		
Low Output Voltage	Vol	$V_{\text{pin2}} = 2.7V, R_{\text{L}} = 15K\Omega \text{ to PIN 8}$			0.8	1.1	
Current Sense Section	•			•	•		
Gain	Gv	(Note 1 & 2)		2.85	3.0	3.15	V/V
Maximum Input Signal	V _{I(MAX)}	$V_{pin1} = 5V$ (Note1)		0.9	1.0	1.1	V
Supply Voltage Rejection	SVR	$12V \leq V_{CC} \leq 25 V$ (Note 1)			70		dB
Input Bias Current I _{BIAS} V _n		V _{pin3} = 3V			-3.0	-10	μA
Output Section	•			•	•		
Low Output Voltage	V _{OL}	I _{SINK} = 20 mA			0.08	0.4	- V
	V _{он}	I _{SINK} = 200 mA			1.4	2.2	
High Output Voltage		I _{SINK} = 20 mA		13	13.5		
		I _{SINK} = 200 mA		12	13.0		
Rise Time	tR	$T_J = 25^{\circ}C, C_L = 1nF$ (Note 3)			45	150	20
Fall Time t⊧		$T_J = 25^{\circ}C, C_L = 1nF$ (Note 3)			35	150	1 113
Undervoltage Lockout Section	•	•		•	•		•
Start Theshold	V _{TH(ST)}	3842/44		14.5	16.0	17.5	V
			3843/45	7.8	8.4	9.0	
Min. Operating Voltage	V _{OPR(min)}	3842/44		8.5	10	11.5	V
(After Turn On)		3843/45		7.0	7.6	8.2	
PWM Section	•			•			
Max. Duty Cycle	D _(MAX)		3842/43	95	97	100	
			3844/45	47	48	50	%
Min. Duty Cycle	D _(MAX)					0	1
Total Standby Current							
Start-Up Current	I _{ST}	384X			0.17	0.3	m ^
Operating Supply Current	I _{CC (OPR)}	$V_{pin3} = V_{pin2} = 0V$			13	17	
Zener Voltage	V ₇	I _{cc} =25 mA		30	38		V

Zener VoltageVzIcc=25 mA* - Adjust Vcc above the start threshold before setting it to 15V.

Note 1: Parameter measured at trip point of latch with V_{pin2} =0. Note 2: Gain defined as $A=\Delta V_{pin1}/\Delta V_{pin3}$; $0 \le V_{pin3} \le 0.8V$.

Note 3: These parameters, although guaranteed, are not 100% tested in production.

Pin functions

Ν	Function	Description
1	COMP	This pin is the Error Amplifier output and is made for loop compensation.
2	V _{FB}	This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider.
3	I _{SENSE}	A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction.
4	R _T /C _T	The oscillator frequency and maximum Output duty cycle are programmed by connecting resistor R_T to V_{ref} and capacitor C_T to ground.
5	GROUND	This pin is the combined control circuitry and power ground.
6	OUTPUT	This output directly drives the gate of a power MOSFET. Peak currents up to 1A are sourced and sink by this pin.
7	V _{cc}	This pin is the positive supply of the integrated circuit.
8	V _{ref}	This is the reference output. It provides charging current for capacitor C_T through resistor R_T .

Application information

Figure 1. Error Amp Configuration

Figure 3. Current Sense Circuit

SCR must be selected for a holding current of less than 0.5mA. The simple two transistor circuit can be used in place of the SCR as shown.

Figure 5. Latched Shutdown

UMW UC3842/43/44/45

Figure 7. External Clock Synchronization

Figure 8. Soft-Start Circuit

UMW UC3842/43/44/45

www.umw-ic.com

友台半导体有限公司

.,

Figure 9. Oscillator and Output Waveforms

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Controllers category:

Click to view products by Youtai manufacturer:

Other Similar products are found below :

LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH 633888R MP2908AGF AZ7500EP-E1 NCP1012AP133G NCP1217P133G NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG HV9123NG-G-M934 IR35207MTRPBF ISL6367HIRZ CAT874-80ULGT3 SJ6522AG SJE6600 TLE63893GV50XUMA1 IR35215MTRPBF SG3845DM NCP1216P133G NCP1236DD65R2G NCP1247BD100R2G NCP1250BP65G NCP4202MNR2G NCP4204MNTXG NCP6132AMNR2G NCP81141MNTXG NCP81142MNTXG NCP81172MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UC3845ADM UBA2051C IR35201MTRPBF MAX8778ETJ+ MAX17500AAUB+T MAX17411GTM+T MAX16933ATIR/V+ NCP1010AP130G NCP1063AD100R2G NCP1216AP133G NCP1217AP100G