Description

The Clamp ${ }^{\text {TM }}$ series of Transient Voltage Suppressors (TVS) are designed to replace multilayer varistors (MLVs) in portable applications such as cell phones, notebook computers, and PDAs. They offer superior electrical characteristics such as lower clamping voltage and no device degradation when compared to MLVs. They are are designed to protect sensitive semiconductor components from damage or upset due to electrostatic discharge (ESD), lightning, electrical fast transients (EFT), and cable discharge events (CDE).
The UClamp3301D is constructed using proprietary EPD process technology.
The EPD process provides low standoff voltages with significant reduc-tions in leakage currents and capacitance over silicon-avalanche diode processes. They feature a true operating voltage of 3.3 volts for superior protection when compared to traditional pn junction devices.
The UClamp3301D is in a SOD-323 package and will protect one unidirectional line. They give the designer the flexibility to protect one line in applications where arrays are not practical.
They may be used to meet the ESD immunity requirements of IEC $61000-4-2$, Level $4(\pm 15 \mathrm{kV}$ air, $\pm 8 \mathrm{kV}$ contact discharge).

Features

100 Watts peak pulse power ($\mathrm{tp}=8 / 20 \mu \mathrm{~s}$)
Transient protection for data lines to
IEC $61000-4-2$ (ESD) $\pm 15 \mathrm{kV}$ (air), $\pm 8 \mathrm{kV}$ (contact)
IEC 61000-4-4 (EFT) 40A (tp = 5/50ns)
IEC 61000-4-5 (Lightning) 10A (tp = 8/20 $\mu \mathrm{s}$)
Small package for use in portable electronics
Suitable replacement for MLVs in ESD protection
applications
Protects one line
Low clamping voltage
Working voltages: 3.3V
Low leakage current
Solid-state silicon-avalanche technology

Mechanical Characteristics

EIAJ SOD-323 package
Molding compound flammability rating: UL 94V-0
Lead Finish: Matte tin
RoHS/WEEE Compliant

Applications

Cell Phone Handsets and Accessories
Laser Diode Protection
Notebooks, Desktops, \& Servers
Portable Instrumentation
Analog Inputs
(18) (3) (1) 岕

UCLAMP3301D

Absolute Maximum Rating

Rating	Symbol	Value	Units
Peak Pulse Power (tp $=8 / 20 \mu \mathrm{~s})$	P_{pk}	100	Watts
Peak Pulse Current (tp $=8 / 20 \mu \mathrm{~s})$	I_{PP}	10	A
ESD Voltage (HBM Waveform per IEC 61000-4-2)	V_{PP}	30	kV
Operating Temperature	T_{J}	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Reverse Stand-Off Voltage	$\mathrm{V}_{\text {RWM }}$				3.3	V
Punch-Through Voltage	$V_{\text {PT }}$	$\mathrm{I}_{\text {PT }}=2 \mu \mathrm{~A}$	3.5			V
Snap-Back Voltage	$\mathrm{V}_{\text {SB }}$	$\mathrm{I}_{\text {SB }}=50 \mathrm{~mA}$	2.8			V
Reverse Leakage Current	$I_{\text {R }}$	$\mathrm{V}_{\text {RWM }}=3.3 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$			0.5	$\mu \mathrm{A}$
Clamping Voltage	V_{c}	$\begin{aligned} \mathrm{I}_{\mathrm{PP}}= & 1 \mathrm{~A}, \mathrm{tp}=8 / 20 \mu \mathrm{~s} \\ & \text { Pin } 1 \text { to } 2 \end{aligned}$			4.5	V
Clamping Voltage	V_{c}	$\begin{aligned} \mathrm{I}_{\mathrm{PP}}= & 5 \mathrm{~A}, \mathrm{tp}=8 / 20 \mu \mathrm{~s} \\ & \text { Pin } 1 \text { to } 2 \end{aligned}$			5.5	v
Clamping Voltage	V_{c}	$\begin{gathered} \mathrm{I}_{\mathrm{Pp}}=10 \mathrm{~A}, \mathrm{tp}=8 / 20 \mu \mathrm{~s} \\ \text { Pin } 1 \text { to } 2 \end{gathered}$			9.5	v
Steering Diode Forward Voltage (Reverse Clamping Voltage)	$V_{\text {F }}$	$\begin{aligned} \mathrm{I}_{\mathrm{PP}}= & 1 \mathrm{~A}, \mathrm{tp}=8 / 20 \mu \mathrm{~s} \\ & \text { Pin } 2 \text { to } 1 \end{aligned}$			1.8	V
Junction Capacitance	C	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$			50	pF

Typical Characteristics

Non-Repetitive Peak Pulse Power vs. Pulse Time

Clamping Voltage vs. Peak Pulse Current

Insertion Loss S21

Applications Information

Device Connection Options

EPD TVS Characteristics

The ULCAMP3301D is constructed using proprietary EPD technology. The structure of the EPD TVS is vastly different from the traditional pn-junction devices. At voltages below 5 V , high leakage current and junction capacitance render conventional ava-lanche technology impractical for most applications. However, by utilizing the EPD technology, the ULCAMP3301D can effectively operate at 3.3 V while maintaining excellent electrical characteristics.

The EPD TVS employs a complex nppn structure in contrast to the pn structure normally found in traditional silicon-avalanche TVS diodes. Since the EPD TVS devices use a 4-layer structure, they exhibit a slightly different IV characteristic curve when compared to conventional devices. During normal operation, the device represents a high-impedance to the circuit up to the device working voltage $\left(\mathrm{V}_{\text {RWM }}\right)$. During an ESD event, the device will begin to conduct and will enter a low impedance state when the punch through voltage $\left(V_{P T}\right)$ is exceeded. Unlike a conventional device, the low voltage TVS will exhibit a slight negative resistance characteristic as it conducts current. This characteristic aids in lowering the clamping voltage of the device, but must be considered in applications where DC voltages are present.

When the TVS is conducting current, it will exhibit a slight "snap-back" or negative resistance characteristics due to its structures. This point is defined on the curve by the snap-back voltage ($\mathrm{V}_{\text {SB }}$) and snap-back current (I_{SB}). To return to a non-conducting state, the current through the device must fall below the I_{SB} (approximately $<50 \mathrm{~mA}$) and the voltage must fall below the V_{sB} (normally 2.8 volts for a 3.3 V device). If a 3.3 V TVS is connected to 3.3V DC source, it will never fall below the snap-back voltage of 2.8 V and will therefore stay in a conducting state.

EPD TVS IV Characteristic Curve

Outline Drawing - SOD-323

DIMENSIONS				
SYMBOL	MILLIMETER		INCHES	
	MIN	MAX	MIN	MAX
A	1.600	1.800	0.063	0.071
B	0.250	0.350	0.010	0.014
C	2.500	2.700	0.098	0.106
D		1.000		0.039
E	1.200	1.400	0.047	0.055
F	0.080	0.150	0.003	0.006
L	0.475	REF	$0.019 R E F$	
L1	0.250	0.400	0.010	0.016
H	0.000	0.100	0.000	0.004

Marking

Ordering information

Order code	Package	Baseqty	Delivery mode
UMW UCLAMP3301D	SOD-323	3000	Tape and reel

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ESD Suppressors / TVS Diodes category:

Click to view products by Youtai manufacturer:

Other Similar products are found below :
60KS200C D18V0L1B2LP-7B D5V0F4U5P5-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A JANTX1N6053A
SA110CA SA60CA SA64CA SMBJ12CATR SMBJ33CATR SMBJ8.0A ESD101-B1-02ELS E6327 ESD105-B1-02EL E6327 ESD112-B102EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF
3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP JANTX1N6126A JANTX1N6462 JANTX1N6465 USB50805e3/TR7 D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DRTR5V0U4SL-7 SCM1293A-04SO ESD200-B1-CSP0201 E6327 SM12-7 SM1605E3/TR13 SMLJ45CA-TP CEN955 W/DATA 82350120560 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B ESD101-B1-02EL E6327 824500181 MMAD1108/TR13 5KP100A

