LINEAR INTEGRATED CIRCUIT

10W CAR RADIO AUDIO AMPLIFIER

DESCRIPTION

The UTC2003 has improved performance with the same pin configuration as the UTC2002.The additional features of UTC2002,very low number of external components, ease of assembly, space and cost saving, are maintained.

The device provides a high output current capacity(up to 3.5A) very low harmonic and crossover distortion.Completely safe operation is guaranteed due to protection against DC and AC short circuit between all pins and ground, thermal over-range, load dump voltage surge up to 40V and fortuitous open ground.

ABSOLUTE MAXIMUM RATINGS(Ta=25°C)

CHARACTERISTICS	SYMBOL	VALUE	UNITS
Peak Supply Voltage	Vs	40	V
DC supply Voltage	Vs	28	V
Operating supply voltage	Vs	18	V
Output peak current(repetitive)	lo	3.5	А
Output peak current(non repetitive)	lo	4.5	А
Power dissipation at Tcase=90°C	Ptot	20	W
Storage temperature	Tstg	-40~+150	O°
junction temperature	Tj	-40~+150	°C

PIN CONNECTION

- 1 Non inverting input
- 2 Inverting input
- 3 Ground
- 4 Output
- 5 Supply Voltage

LINEAR INTEGRATED CIRCUIT

SCHEMATIC DIAGRAM

LINEAR INTEGRATED CIRCUIT

DC Test Circuit

AC Test Circuit

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT						
DC CHARACTERISTICS												
Supply Voltage	Vs		8		18	V						
Quiescent Output	Vo		6.1	6.9	7.7	V						
Voltage												
Quiescent drain	ld			44	50	mA						
current												
AC CHARACTER	ISTICS											
		d=10%,f=1kHz										
		$R_L=4\Omega$	6									
Output power	Po	RL=2Ω	9	10		W						
		RL=3.2Ω		7.5								
		RL=1.6Ω		12								
		f=1kHz										
		Po=0.5W,RL=4Ω		14		mV						
Input sensitivity	Vi	Po=6W,RL=4Ω		55		mV						
		Po=0.5W,RL=2Ω		10		mV						
		Po=10W,RL=2Ω		50		mV						
Input saturation voltage	Vi(rms)		300			mV						
Frequency response(-3dB)	В	Po=1W,RL=4Ω	40		15000	Hz						
		f=1kHz										
Distortion	D	Po=0.05 to 4.5W ,RL=4Ω		0.15		%						
		$P_{0}=0.05$ to 7.5W $R_{1}=2\Omega$		0.15								

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Vs=14, 4V, Ta=25°C)

(continued)

YWYYOUWANG ELECTRONICS CO.LTD

LINEAR INTEGRATED CIRCUIT

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input	Ri	open loop,f=1kHz	70	150		kΩ
Resistance(pin 1)						
Input noise current	e _N			60	200	pА
Input noise voltage	IN			1	5	μV
open loop	Gvo	f=1kHz		80		dB
voltage gain		f=10kHz		60		dB
closed loop	Gvc	f=1kHz,RL=4Ω				
voltage gain			39.3	40	40.3	dB
		f=1kHz				
Efficiency	η	Po=6W,RL=4Ω		69		%
-		Po=10W,RL=2Ω		65		%
Supply voltage	SVR	f=100Hz,Vripple=0.5V				
rejection		$Rg=10k \Omega$, $RL=4 \Omega$	30	36		dB

F	Fig.2 Quiescent drain current vs.Supply voltage											
						-		-				
8	1	0		12	1	4		¹⁶ V	s(V)			

Fig.3 Output power vs.Supply

	vonage										
		Gv=4 f=1kH d=10 ⁴	0dB Iz %					R	-1.6Ω		
									=2Ω		
					Ζ	6	\angle	R	3.20		
			\mathbb{Z}	E		6	\leq	R	=4Ω		
0		5	-	10	1	5	2	L_ 10 V	s(V)		

Fig.4 output power vs.load resistance

PO										
(W)										
16						0	404B	_		
10		$ \times$	Vs=16	SV		f=1k	Hz			
		-				- d=1	0%	-	-	-
	Vs=	14.4\	$\langle \setminus$							
12		\backslash								
	-	-			<u> </u>	-				-
	Vs=	12V				L				
0			/	$\overline{\ }$						
		-	\geq	< -	Λ	_	\geq			_
	Vs	=8V		\sim	~	\sim				
4			/		~	\sim	~	/	-	\sim
				\sim	-				_	
										_
0	0		,		4	-	8		8 0	
	-						-		- ĸ	1100

58

Po (W)

								L							i I		L
54						Ģ	<u>ال</u>	4	l0dB	٦					П		I
52	$\overline{}$			F		F	SL.	-2	Ω	1			t	Η	đ	T	t
48		\mathbf{X}		t		Η	H	t	-	-		-	t	Η	đ	t	t
44			N		-	Η	Н	ł	_	-		-	ŀ	Η	Н	+	ł
40				P	4		μ	ļ		_		_	-		Н		ļ
36	\mathbf{i}						Ν	l							Ц		l
32		K						ſ	Ν						I		l
							Π	T		$\overline{\}$			Г	Π	П	Π	Ī
28				h	K		Ħ	t					t	Η	đ	T	t
24				ŀ	-	Ρ	Н	╏		-		-	⊢	Η	đ	+	ł
20							Ш	1							Ц	1	l
1	0							10	10		Vi	(rn	ns)	1	00	0

Fig.6 Gain vs. Input sensitivity

Fig.7 Distortion vs. output power

Fig.9 Supply voltage rejection vs. voltage gain

50 Gv(dB)

YWYYOUWANG ELECTRONICS CO.LTD

LINEAR INTEGRATED CIRCUIT

η (%)

Po(W)

-

APPLICATION INFORMATION

Fig 16 Typical application circuit

YWYOUWANG ELECTRONICS CO.LTD

LINEAR INTEGRATED CIRCUIT

Fig.18 20W Bridge configuration application

The Values of the capacitors C3 and C4 are different to optimize the SVR(Typ. 40dB)

Fig.20 Low cost bridge configuration application circuit(Po=18W)

BUILT-IN PROTECTION SYSTEMS

Load dump voltage surge

The UTC2003 has a circuit which enables it to withstand a voltage pulse train, on pin 5, of the type shown in Fig. 23. If the supply voltage peaks to more than 40V, then an LC filter must be inserted between the supply and pin 5, in order to assure that the pulses at pin 5 will be head within the limits shown in Fig.22.

A suggested LC network is shown in Fig.23. With this network, a train of pulses with amplitude up to 120V and width of 2ms can be applied at point A. This type of protection is ON when the supply voltage(pulsed or DC) exceeds 18V. For this reason the maximum operating supply voltage is 18V.

YWYYOUWANG ELECTRONICS CO.LTD

LINEAR INTEGRATED CIRCUIT

Short Circuit (AC and DC Conditions)

The UTC2003 can withstand a permanent short-circuit on the output for a supply voltage up to 16V.

Polarity inversion

High current(up to 5A) can be handled by the device with no damage for a longer period than the blow-out time of a quick 1A fuse(normally connected in series with the supply).

The feature is added to avoid destruction if, during fitting to the car, a mistake on connection of the supply is made.

Open ground

When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier will be damaged. On the UTC2003 protection diodes are included to avoid any damage.

Inductive load

A protection diode is provide between pin 4 and pin 5(see the internal schematic diagram) to allow use of the UTC2003 with inductive loads. In particular,theUTc2003 can drive a coupling transformer for audio modulation.

DC voltage

The maximum operating DC voltage on the UTC2003 is 18V.

However the device can withstand a DC voltage up to 28V with no damage. This could occur during winter if two batteries were series connected to crank the engine.

Thermal shut-down

The presence of a thermal limiting circuit offers the following advantages:

1).an overload on the output (even if it is permanent),or an excessive ambient temperature can be easily withstood. 2).the heat-sink can have a smaller factor compared with that of a conventional circuit. There is no device damage in case of excessive junction temperature: all that happens is that Po(and there Ptot) and Id are reduced.

LINEAR INTEGRATED CIRCUIT

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of Fig.16. Different values can be used. The following table can help the designer.

Component	Recommended value	Purpose	Large than recommended value	Large than recommended value
R1	(Gv-1)*R2	gain setting.		increase of Gain
R2	2.2Ω	gain and SVR setting.	Decrease of SVR	
R3	1Ω	Frequency stacility	Danger of oscillation at high frequencies with inductive loads.	
Rx	≈20*R2	Upper frequency cutoff	Poor high frequencies attenuation	Dange of oscillation
C1	2.2µF	Input DC decoupling		Noise at switch-on switch-off
C2	470μF	Ripple rejection		Decrease of SVR
C3	0.1µF	Supply voltage bypass		Dange of oscillation
C4	1000μF	Output coupling to load		Higher low frequency cutoff
C5	0.1µF	Frequency stability		Danger of oscillation at high frequencies with inductive loads.
Сх	≈/(2 π [*] B*R1)	Upper frequency cutoff	smaller bandwidth	Larger bandwidth

YWYYOUWANG ELECTRONICS CO.LTD

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio Amplifiers category:

Click to view products by Youwang Electronics manufacturer:

Other Similar products are found below :

LV47002P-E MP7747DQ-LF-P AZ386MTR-E1 NCP2811AFCT1G NCP2890AFCT2G NJM8068RB1-TE1 NJW1194V-TE1 LA4282-E LA4814JA-AE LC706200CM SSM2377ACBZ-R7 FDA2100LV TDA2541 TDA7385H TDA7391LV TDA7575BPDTR TDA7718NTR IS31AP2121-LQLS1 IS31AP4915A-QFLS2-TR LA74309FA-BH 421067X 480263C NCP2820FCT2G STPA001 TDA1515AQ TDA1520B TDA1591T TDA2051H TDA4850 TDA7391PDUTR TDA7563BH TDA7718B LA4425F-E LA4742-E TDA7391PDU TDA7491MV13TR TDA749213TR TDA7563AH TDA7850H STK433-070GN-E E-TDA7391PDTR SSM2529ACBZ-R7 SSM2518CBZ-R7 MAX9890BEBL+T MAX98303EWE+T MAX98358EWL+ MAX98304DEWL+T MAX97220DETE+T TS4962MEIJT TS4990EIJT