

## **2Gb DDR2 SDRAM Specification**

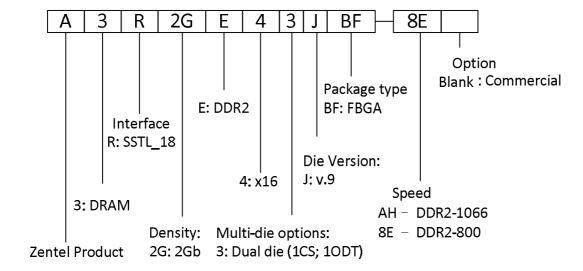
#### **Specifications**

- Density: 2G bits
- Organization
  - o 8 banks x 16M words x 16 bits
- Package
  - 84-ball FBGA (x16)
  - Lead-free(RoHS compliant)
- Power supply
  - $\circ$  V<sub>DD</sub>,V<sub>DDQ</sub>=1.7 to 1.9V
- Data Rate: 1066Mbps/800Mbps
- 2KB page size (x16)
  - Row address: AX0 to AX13
  - Column address: AYO to AY9
- Eight internal banks for concurrent operation
- Interface: SSTL 18
  - o Burst lengths (BL): 4,8
- Burst type (BT):
  - Sequential
  - Interleave
- CAS latency (CL): 3, 4, 5, 6, 7
- Precharge: Auto precharge option for each burst access
- Driver strength: Normal/Weak
- Low self-refresh current (IDD6) parts are available
- Refresh: auto-refresh, self-refresh
- Refresh cycles: 8192 cycles/64ms
  - Average auto-refresh period
     7.8us at TC ≤ +85°C
     3.9us at TC > +85°C
- Operating case temperature range
  - TC =  $0^{\circ}$ C to +85°C (Commercial grade)

#### **Features**

- Double data-rate architecture: two data transfers per clock cycle
- The high-speed data transfer is realized by the 4 bits prefetch pipelined architecture
- Bi-directional differential data strobe (DQS and /DQS) is transmitted/received with data for capturing data at the receiver
- DQS is edge-aligned with data for READs; center- aligned with data for WRITEs
- Differential clock inputs (CK and /CK)
- DLL aligns DQ and DQS transitions with CK transitions
- Commands entered on each positive CK edge; data and data mask referenced to both edges of DQS
- Data mask (DM) for write data
- Posted CAS by programmable additive latency for better command and data bus efficiency
- On-Die-Termination for better signal quality
- Programmable RDQS, /RDQS output for making x8 organization compatible with x4 organization
- /DQS, (/RDQS) can be disabled for single-ended Data Strobe operation
- Off-Chip Driver (OCD) impedance adjustment is not supported




# **Table of Contents**

| 2Gb D | DR2 SDRAM Specification    | 1  |
|-------|----------------------------|----|
|       |                            |    |
| 1.    | Ordering Information       | 3  |
| 2.    | Package Ball Assignment    | 4  |
| 3.    | Package outline drawing    | 5  |
| 4.    | Electrical Specifications: | 6  |
| 5.    | Block Diagram              | 15 |
| 6.    | Pin function               | 16 |
| 7.    | Command Operation          | 18 |
| 8.    | Functional Description     | 19 |



## 1. Ordering Information

| Part Number    | Organization<br>(words x bits) | Internal<br>Banks | Speed bin<br>(CL-tRCD-tRP) | Package      |
|----------------|--------------------------------|-------------------|----------------------------|--------------|
| A3R2GE43JBF-8E | 128M × 16                      | 0                 | DDR2-800 (5-5-5)           | 84-ball FBGA |
| A3R2GE43JBF-AH | 128IVI × 16                    | 8                 | DDR2-1066 (7-7-7)          | 84-Dall FBGA |





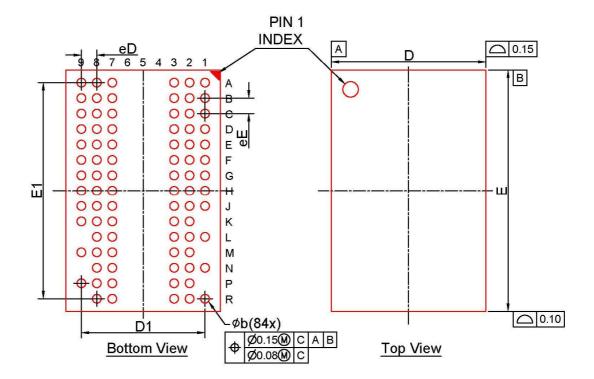
## 2. Package Ball Assignment

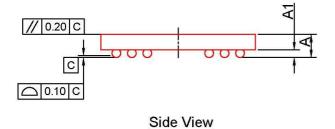
x16: "84-Ball FBGA – 8x12.5mm, ball pitch 0.8mm, ball size 0.45mm. (package code BF)"

|   | 84-ball FBGA<br>(×16 organization) |           |          |           |            |           |
|---|------------------------------------|-----------|----------|-----------|------------|-----------|
|   | 1                                  | 2         | 3        | 7         | 8          | 9         |
| Α | O VDD                              | ONC       | O<br>vss | O<br>VSSQ | O<br>/UDQS | VDDQ      |
| В | O<br>DQ14                          | O<br>VSSQ | OUDM     | UDQS      | O<br>VSSQ  | O<br>DQ15 |
| С | VDDQ                               | DQ9       | VDDQ     | VDDQ      | O<br>DQ8   | VDDQ      |
| D | DQ12                               | vssa      | DQ11     | DQ10      | vssq       | DQ13      |
| Е | VBD.                               | ON        | vss      | vssa      | /LDQS      | VDDQ      |
| F | DQ6                                | VSSQ      | LDM      | LDQS      | VSSQ       | O<br>DQ7  |
| G | VDDQ                               | O<br>DQ1  | VDDQ     | VDDQ      | 000        | VDDQ      |
| Н | DQ4                                | O<br>VSSQ | DQ3      | DQ2       | O<br>VSSQ  | O<br>DQ5  |
| J | VBDL                               | VREF      | vss      | VSSDL     | Sk         | VDD       |
| K |                                    | CKE       | (WE      | /RAS      | O<br>/CK   | ODT       |
| L | O<br>BA2                           | O<br>BA0  | O<br>BA1 | /CAS      | O<br>/cs   |           |
| М | 28500                              | A10       | O<br>A1  | Q<br>A2   | A0         | VDD       |
| N | O<br>VSS                           | O<br>A3   | O<br>A5  | O<br>A6   | O<br>A4    |           |
| Ρ |                                    | Q<br>A7   | Q<br>A9  | A11       | Q<br>A8    | O<br>vss  |
| R | VDD                                | O<br>A12  | OC       | ONC.      | O<br>A13   |           |

(Top view)

| Pin name        | Function                 | Pin name | Function                     |
|-----------------|--------------------------|----------|------------------------------|
| A0 to A13       | Address inputs           | ODT      | ODT control                  |
| BA0 to BA2      | Bank select              | VDD      | Power Supply                 |
| DQ0 to DQ15     | Data input/output        | VSS      | Ground                       |
| DQS, /DQS       |                          | VDDQ     | Power Supply for DQ circuit  |
| UDQS, /UDQS     | Differential data strobe | VSSQ     | Ground for DQ circuit        |
| LDQS, /LDQS     |                          | VREF     | Input reference voltage      |
| /CS             | Chip select              | VDDL     | Power Supply for DLL circuit |
| /RAS, /CAS, /WE | Command input            | VSSDL    | Ground for DLL circuit       |
| CKE             | Clock enable             | NC       | No connection                |
| CK,/CK          | Differential clock input | NU       | Not usable                   |





## 3. Package outline drawing

x16,84-ball FBGA

Solder ball: Lead free (Sn-Ag-Cu)

Unit: mm





| Cymalaal | MILLIMETERS |          |       |  |  |  |
|----------|-------------|----------|-------|--|--|--|
| Symbol   | MIN.        | NOM.     | MAX.  |  |  |  |
| Α        |             |          | 1.20  |  |  |  |
| A1       | 0.25        |          | 0.40  |  |  |  |
| D        | 7.90        | 8.00     | 8.10  |  |  |  |
| D1       | (           | 6.40 BSC |       |  |  |  |
| E        | 12.40       | 12.50    | 12.60 |  |  |  |
| E1       | 1           | 11.20 BS | C     |  |  |  |
| b        | 0.40        |          | 0.50  |  |  |  |
| eD       | 0.80 BSC    |          |       |  |  |  |
| еE       | 0.80 BSC    |          |       |  |  |  |



### 4. Electrical Specifications:

All voltages are referenced to each GND level (VSS and VSSQ).

Execute power-up and Initialization sequence before proper device operation can be achieved.

#### 4.1 Absolute Maximum Ratings

| Parameter                       | Symbol | Rating       | Unit | Note |
|---------------------------------|--------|--------------|------|------|
| Power supply voltage            | VDD    | -1.0 to +2.3 | V    | 1    |
| Power supply voltage for output | VDDQ   | -0.5 to +2.3 | V    | 1    |
| Power supply voltage for DLL    | VDDL   | -0.5 to +2.3 | V    | 1    |
| Input voltage                   | VIN    | -0.5 to +2.3 | V    | 1    |
| Output voltage                  | VOUT   | -0.5 to +2.3 | V    | 1    |
| Storage temperature             | Tstg   | - 55 to +150 | °C   | 1, 2 |
| Power dissipation               | PD     | 1.0          | W    | 1    |

#### Notes:

- Stresses greater than those listed under Absolute Maximum ratings may cause permanent damage to the device. This
  is a stress rating only and functional operation of the device at these or any other conditions above those indicated in
  the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for
  extended periods may affect reliability.
- 2. Storage temperature is the case surface temperature on the center/top side of the DRAM.

#### Caution

Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

#### 4.2 Operating Temperature Condition

| Product grades | Parameter                  | Symbol | Rating   | Unit | Note    |
|----------------|----------------------------|--------|----------|------|---------|
| Commercial     | Operating case temperature | TC     | 0 to +85 | °C   | 1, 2, 3 |

#### Notes:

- 1. Operating temperature is the case surface temperature on the center/top side of the DRAM.
- 2. Supporting 0 to +85°C with full AC and DC specifications.
- 3. Supporting up to +85°C and being able to extend to +95°C ( with doubling auto-refresh commands in frequency to a 32ms period (tREFI = 3.9µs) and higher temperature Self-Refresh entry via A7 "1" on EMRS(2).



#### 4.3 Recommended DC Operating Conditions(SSTL\_18)

| Parameter                       | Symbol   | min.         | typ.        | max.         | Unit | Note |
|---------------------------------|----------|--------------|-------------|--------------|------|------|
| Power Supply voltage            | VDD      | 1.7          | 1.8         | 1.9          | V    | 4    |
| Power Supply voltage for output | VDDQ     | 1.7          | 1.8         | 1.9          | V    | 4    |
| Power Supply voltage for DLL    | VDDL     | 1.7          | 1.8         | 1.9          | V    | 4    |
| Input reference voltage         | VREF     | 0.49 x VDDQ  | 0.50 x VDDQ | 0.51 x VDDQ  | V    | 1.2  |
| Termination voltage             | VTT      | VREF - 0.04  | VREF        | VREF + 0.04  | V    | 3    |
| DC input logic high             | VIH (DC) | VREF + 0.125 | -           | VDDQ + 0.3   | V    |      |
| DC input logic low              | VIL (DC) | -0.3         | -           | VREF - 0.125 | V    |      |
| AC input logic high             | VIH (AC) | VREF + 0.200 | -           | -            | V    |      |
| AC input logic low              | VIL (AC) | -            | -           | VREF - 0.200 | V    |      |

#### Notes:

- 1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5 x VDDQ of the transmitting device and VREF are expected to track variations in VDDQ.
- 2. Peak to peak AC noise on VREF may not exceed ±2% VREF (DC)
- 3. VTT of transmitting device must track VREF of receiving device.
- 4. VDDQ tracks with VDD, VDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDL tied together.

#### 4.4 Overshoot / Undershoot Specification

[Refer to section 6 in JEDEC Standard No. JESD79-2F and section 5 in JESD208]



#### 4.5 DC Characteristics

| Parameter                          | Test Condition                                                                                                                       | Symbol  | Speed | 10<br>X16 | Unit |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-----------|------|
| Operating current                  | one bank;<br>tCK = tCK (IDD), tRC = tRC (IDD), tRAS min. (IDD);<br>CKE is H, /CS is H between valid commands;                        |         | -8E   | 123       | mA   |
| (ACT- PRE)                         | Address bus inputs are SWITCHING; Data bus inputs are SWITCHING                                                                      | IDD0    | -AH   | 133       | mA   |
| Operating current                  | one bank; IOUT = 0mA; BL = 4,CL = CL(IDD), AL = 0;<br>tCK = tCK (IDD), tRC = tRC (IDD);<br>tRAS =tRAS min. (IDD); tRCD = tRCD (IDD); | IDD1    | -8E   | 143       | mA   |
| (ACT-READ-PRE)                     | CKE is H, /CS is H between valid commands;<br>Address bus inputs are SWITCHING;<br>Data pattern is same as IDD4W                     | 1001    | -AH   | 153       | mA   |
| Precharge power-                   | all banks idle; tCK = tCK (IDD);CKE is L;                                                                                            | 10.000  | -8E   | 38        | mA   |
| down standby current               | Other control and address bus inputs are STABLE; Data bus inputs are FLOATING                                                        | IDD2P   | -AH   | 48        | mA   |
| Precharge quiet                    | all banks idle; tCK = tCK (IDD);<br>CKE is H, /CS is H;                                                                              |         | -8E   | 63        | mA   |
| Standby current                    | Other control and address bus inputs are STABLE; Data bus inputs are FLOATING                                                        | IDD2Q   | -AH   | 73        | mA   |
| Idle standby current               | all banks idel tCK = tCK (IDD);CKE is H, /CS is H;                                                                                   |         | -8E   | 63        | mA   |
|                                    | Other control and address bus inputs are SWITCHING; Data bus inputs are SWITDCHING                                                   | IDD2N   | -AH   | 73        | mA   |
| Active power–down                  | All banks open; tCK = tCK (IDD); CKE is L;                                                                                           |         | -8E   | 72        | mA   |
| Standby current<br>(Fast PND Exit) | Other control and address bus inputs are STABLE; Data bus input are Floating; MRS(12)=0                                              | IDD3P-F | -AH   | 82        | mA   |
| Active power–down                  | All banks open;tCK = tCK (IDD); CKE is L;                                                                                            | 10030.6 | -8E   | 65        | mA   |
| Standby current (Slow PND Exit)    | Other control and address bus inputs are STABLE; Data bus input are Floating; MRS(12)=1                                              | IDD3P-S | -AH   | 75        | mA   |
| Active standby                     | all banks open;<br>tCK = tCK (IDD); tRAS = tRAS max. (IDD), tRP = tRP (IDD);                                                         | IDD3N   | -8E   | 122       | mA   |
| current                            | CKE is H, /CS is H between valid commands; Other control and address bus inputs are SWITCHING;                                       |         | -AH   | 132       | mA   |
| Operating current                  | all banks open, continuous burst reads, IOUT = 0mA; BL = 4,CL = CL(IDD), AL = 0; tCK = tCK (IDD);tRAS = tRAS max. (IDD), tRP = tRP   | IDD4R   | -8E   | 231       | mA   |
| (Burst read operating)             | (IDD); CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W                    | IDD4K   | -AH   | 241       | mA   |
| Operating current                  | all banks open, continuous burst writes; BL = 4, CL = CL (IDD), AL = 0; tCK = tCK (IDD),tRAS = tRAS max. (IDD), tRP = tRP (IDD);     |         | -8E   | 277       | mA   |
| (Burst write operating)            | CKE is H, /CS is H between valid commands;<br>Address bus inputs are SWITCHING;<br>Data bus inputs are SWITCHING                     | IDD4W   | -AH   | 287       | mA   |



## Doc. No. DSA3R2GE43JBFF.01 A3R2GE43JBF 2Gb DDR2 SDRAM

| Parameter            | Test Condition                                                                                                                                                      | Symbol | Speed    | Ю   | Unit |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-----|------|
|                      |                                                                                                                                                                     |        |          | X16 |      |
| Auto-refresh current | tCK = tCK (IDD); Refresh command every tRFC (IDD) interval; CKE is H, /CS is H between valid commands;                                                              | IDD5   | -8E      | 230 | mA   |
| Auto-refresh current | Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING                                                                                   |        | -AH      | 240 | mA   |
| Self-refresh current | Self Refresh Mode; CK and /CK at 0V; CKE ≤ 0.2V; Other control and address bus inputs are FLOATING; Data bus inputs are FLOATING                                    | IDD6   | -8E, -AH | 18  | mA   |
| Operating current    | all bank interleaving reads, IOUT = 0mA;  BL = 4, CL= CL (IDD), AL = tRCD (IDD) - 1 × tCK (IDD);  tCK = tCK (IDD), tRC = tRC (IDD),                                 | 1007   | -8E      | 346 | mA   |
| (Bank interleaving)  | tRRD = tRRD (IDD), tRCD = 1 x tCK (IDD)  CKE is H, CS is H between valid commands;  Address bus inputs are STABLE during DESELECTs;  Data pattern is same as IDD4W; | IDD7   | -AH      | 356 | mA   |

#### Notes:

- 1. IDD specifications are tested after the device is properly initialized.
- 2. Input slew rate is specified by AC Input Test Condition.
- 3. Data bus consists of DQ, DM, DQS, /DQS, RDQS and /RDQS, IDD values must be met with all combinations of EMRS bits 10 and 11.
- 4. Definitions for IDD

L is defined as VIN no greater than VIL (AC) (max.)

H is defined as VIN no less than VIH (AC) (min.)

STABLE is defined as inputs stable at an H or L level

FLOATING is defined as inputs at VREF = VDDQ/2

SWITCHING is defined as:

Inputs changing between H and L every other clock cycle (once per two clocks) for address and control signals, and inputs changing between H and L every other data transfer (once per clock) for DQ signals not including masks or strobes.

- 5. Refer to AC Timing for IDD Test Conditions.
- 6. When TC > 85°C, IDD6 must be increased by 50% (IDD6 will increase by this amount if TC < 85°C and double refresh option is still enabled)
- 7. For Automotive grade 2 products, when TC > 95°C, IDD0-IDD5 and IDD7 must be increased by 10%



### **AC Timing for IDD Test Conditions**

For purposes of IDD testing, the following parameters are to be utilized.

| Parameter       | DDR2-800 (5-5-5) | DDR2-1066 (7-7-7) | Unit |
|-----------------|------------------|-------------------|------|
| CL(IDD)         | 5                | 7                 | tCK  |
| tRCD(IDD)       | 12.5             | 13.125            | ns   |
| tRC(IDD)        | 57.5             | 58.125            | ns   |
| tRRD(IDD)-x8    | 7.5              | 7.5               | ns   |
| tRRD(IDD)-x16   | 10               | 10                | ns   |
| tCK(IDD)        | 2.5              | 1.875             | ns   |
| tRAS(min.)(IDD) | 45               | 45                | ns   |
| tRAS(max.)(IDD) | 70000            | 70000             | ns   |
| tRP(IDD)        | 12.5             | 13.125            | ns   |



#### 4.6 Leakage characteristics

| Parameter              | Symobl | Value | Unit | Notes              |
|------------------------|--------|-------|------|--------------------|
| Input leakage current  | ILI    | 2     | μΑ   | VSS ≤ VIN ≤ VDD    |
| Output leakage current | ILO    | 5     | μΑ   | VSSQ ≤ VOUT ≤ VDDQ |

### 4.7 Output AC Test conditions and Output DC current drive

[Refer to section 6 in JEDEC Standard No. JESD79-2F and section 5 in JESD208]

### 4.8 Differential input AC logic level and Differential AC output parameters

[Refer to section 6 in JEDEC Standard No. JESD79-2F and section 5 in JESD208]

#### 4.9 ODT DC Electrical Characteristics

[Refer to section 6 in JEDEC Standard No. JESD79-2F and section 5 in JESD208]

#### 4.10 Pin Capacitance (TA = $25^{\circ}C$ , VDD, VDDQ = $1.8V \pm 0.1V$ )

| Parameter                         | Symbol | Pins                                         | min | max  | Unit | Notes |
|-----------------------------------|--------|----------------------------------------------|-----|------|------|-------|
| CLK input pin capacitance         | ССК    | СК, /СК                                      | 1.0 | 2.0  | pF   | 1     |
| Input pin capacitance             | CIN    | /CS, /RAS, /CAS, /WE,<br>CKE, ODT, Address   | 1.0 | 1.75 | pF   | 1     |
| Input/output pin capacitance CI/O |        | DQ, UDQS, /UDQS,<br>LDQS, /LDQS, UDM,<br>LDM | 2.5 | 3.5  | pf   | 2     |

### Notes:

- 1. Matching within 0.25pF.
- Matching within 0.50pF.





### 4.11 AC Characteristics

New unit tCK(avg) and nCK, are introduced in DDR2-1066 and DDR2-800 tCK(avg): actual tCK(avg) of the input clock under operation. nCK: one clock cycle of the input clock, counting the actual clock edges.

| Davameter                                     | Sumbol     | min/max      | Data         | Unit          |          |
|-----------------------------------------------|------------|--------------|--------------|---------------|----------|
| Parameter                                     | Symbol     | minymux      | 800          | 1066          | MT/s     |
| Max. Frequency                                | -          | -            | 400 533      |               | MHz      |
| CAS Latency                                   | CL         | -            | 3, 4,        | 5, 6, 7       | n CK     |
|                                               | (          | Clock Timing |              |               |          |
| Clock cycle time @ CL=3                       | tCK(avg)   | min          | 50           | ps            |          |
| Clock cycle time @ CL=4                       | tCK(avg)   | min          | 37           | '50           | ps       |
| Clock cycle time @ CL=5                       | tCK(avg)   | min          | 25           | 500           | ps       |
| Clock cycle time @ CL=6                       | tCK(avg)   | min          | 25           | 500           | ps       |
| Clock cycle time @ CL=7                       | tCK(avg)   | min          | 18           | 375           | ps       |
| Max. clock cycle time for all latency         | tCK(avg)   | max          | 80           | 000           | ps       |
| Average High pulse width                      | tCH(avg)   | min          | 0.           | 45            | tCK(avg) |
| Average mgm parse wrath                       | terr(avg)  | max          | 0.           | 55            | tCK(avg) |
| Average Low pulse width                       | tCL(avg)   | min          | 0.           | 45            | tCK(avg) |
| Average tow purse wrath                       | ter(avg)   | max          | 0.           | 55            | tCK(avg) |
| CK half period                                | tHP        | min          | min(tCH(ab   | s), tCL(abs)) | ps       |
|                                               | Core T     | iming Param  | eters        |               |          |
| Active to read/write command delay            | tRCD       | min          | 12.5         | 13.125        | ns       |
| Precharge command period                      | tRP        | min          | 12.5         | 13.125        | ns       |
| Active to precharge command                   | tRAS       | min          | 4            | ns            |          |
| Active to precharge communic                  | thas       | max          | 70           | ns            |          |
| ACTIVATE-to-ACTIVATE command period           | tRC        | min          | 57.5 58.125  |               | ns       |
| CAS-to-CAS delay                              | tCCD       | min          | 2            |               | tCK(avg) |
| ternal READ-to-PRECHARGE command tRTP         |            | min          | 7.5          |               | ns       |
| Write recovery time                           | tWR        | min          | 15           |               | ns       |
| Write-to-read delay                           | tWTR       | min          | 7.5          |               | ns       |
| Active bank A to active bank B (x8)           |            | min          | 7.5          |               | ns       |
| Active bank A to active bank B (x16)          | tRRD       | min          | 1            | ns            |          |
| Four active window period (x8)                | .5444      | min          | 35           |               | ns       |
| Four active window period (x16)               | tFAW       | min          | 45           |               | ns       |
| Address and control input hold time           | tIH(base)  | min          | 250          | 200           | ps       |
| Address and control input setup time          | tIS(base)  | min          | 175          | 125           | ps       |
| Dead are such la                              | +0.00.5    | min          | 0            | .9            | tCK(avg) |
| Read preamble                                 | tRPRE      | max          | 1.1          |               | tCK(avg) |
| DEAD masterials                               | +DDCT      | min          | 0.4          |               | tCK(avg) |
| READ postamble                                | tRPST      | max          | 0.6          |               | tCK(avg) |
| DO low impedance time from CV /CV             | ±1.7/D.O.) | min          | 2 x tAC(min) |               | ps       |
| DQ low-impedance time from CK, /CK            | tLZ(DQ)    | max          | tAC(max)     |               | ps       |
| DOS law improduces time from CV ICV           | tLZ(DQS)   | min          | tAC(min)     |               | ps       |
| DQS low-impedance time from CK, /CK           |            | max          | tAC(max)     |               | ps       |
| Data-out high-impedance time from CK,         | tHZ        | max          | tAC(         | max)          | ps       |
| DQS-DQ skew for DQS and associated DQ signals | tDQSQ      | max          | 200 175      |               | ps       |



## Doc. No. DSA3R2GE43JBFF.01 A3R2GE43JBF 2Gb DDR2 SDRAM

| O                                                                                  | Cumbal    |            | Data                  | Unit     |           |
|------------------------------------------------------------------------------------|-----------|------------|-----------------------|----------|-----------|
| Parameter                                                                          | Symbol    | min/max    | 800                   | 1066     | MT/s      |
| DQS output access time from CK, /CK                                                | tDQSCK    | min        | +350                  | +325     | ps        |
| DQ3 output access time nom ck, /ck                                                 | tDQ3CK    | max        | -350                  | -325     | μs        |
| DQ output access time from CK, /CK                                                 | tAC       | min        | +400                  | +350     | ps        |
| ·                                                                                  |           | max        | -400                  | -350     | ps        |
| DQ hold skew factor                                                                | tQHS      | max        | 300                   | 250      | ps        |
| DQ/DQS output hold time form DQS                                                   | tQH       | min        | tHP -                 | tQHS     | ps        |
| Write command to DQS associated clock edge                                         | WL        | -          | RL                    | - 1      | nCK       |
| DQ and DM input hold time                                                          | tDH(base) | min        | 125                   | 75       | ps        |
| DQ and DM input setup time                                                         | tDS(base) | min        | 50                    | 0        | ps        |
| DQS latching rising transitions to                                                 | tDQSS     | min        | +0                    | .25      | tCK(avg)  |
| associated clock edges                                                             |           | max        | -0.                   | 25       | terr(avg) |
| DQS input HIGH-level width                                                         | tDQSH     | min        | 0.3                   |          | tCK(avg)  |
| DQS input LOW-level width                                                          | tDQSL     | min        | 0.:                   | 35       | tCK(avg)  |
| DQS falling edge to CK setup time                                                  | tDSS      | min        | 0                     | .2       | tCK(avg)  |
| DQS falling edge hold time from CK                                                 | tDSH      | min        | 0.                    |          | tCK(avg)  |
| Write preamble                                                                     | tWPRE     | min        | 0.:                   |          | tCK(avg)  |
| Write postamble                                                                    | tWPST     | min        | 0.                    |          | tCK(avg)  |
| · ·                                                                                |           | max        | 0.                    | tCK(avg) |           |
| Control and Address input pulse width for each input                               | tIPW      | min        | 0.6                   |          | tCK(avg)  |
| DQ and DM input pulse width for each input                                         | tDIPW     | min        | 0.35                  |          | tCK(avg)  |
| Mode register set command delay                                                    | tMRD      | min        |                       | 2        | nCK       |
| CKE minimum pulse width (HIGH and LOW                                              | tiviits   |            |                       |          |           |
| pulse width)                                                                       | tCKE      | min        | 3                     |          | nCK       |
| Exit self refresh to a non-read command                                            | tXSNR     | min        | tRFC                  |          | ns        |
| Exit self refresh to a read command                                                | tXSRD     | min        | 200                   |          | nCK       |
| Exit precharge power-down to any non-<br>read command                              | tXP       | min        | 2                     | 3        | nCK       |
| Exit active power-down to read                                                     | tXARD     | min        | 2                     | 3        | nCK       |
| Exit active power-down to read (slow exit low power mode)                          | tXARDS    | min        | 8-AL                  | 10-AL    | nCK       |
| Auto precharge write recovery + precharge time                                     | tDAL      | min        | WR + RU(tRP/tCK(avg)) |          | nCK       |
| Outpt impedance test driver delay                                                  | tOIT      | min        | 0                     |          | ns        |
|                                                                                    |           | max        |                       | 2        |           |
| MRS command to ODT update delay                                                    | tMOD      | min<br>max | 0<br>12               |          | ns        |
| Auto refresh to active/auto refresh                                                | tRFC      | min        | 195                   |          | ns        |
| command time                                                                       |           |            |                       |          |           |
| Average periodic $(TC \le +85^{\circ}C)$<br>refresh interval $(TC > +85^{\circ}C)$ | tREFI     | max        | 7.8<br>3.9            |          | us<br>us  |
| Minimum time clocks remains ON after                                               | tDELAY    | min        | tIS + tCK(avg) + tIH  |          | ns        |
| CKE asynchronously drops low                                                       |           |            | -                     |          |           |

Note:

[Refer to section 6 in JEDEC Standard No. JESD79-2F and section 5 in JESD208]





#### 4.12 AC Input Test Conditions

[Refer to section 6 in JEDEC Standard No. JESD79-2F and section 5 in JESD208]

#### 4.13 Clock Jitter

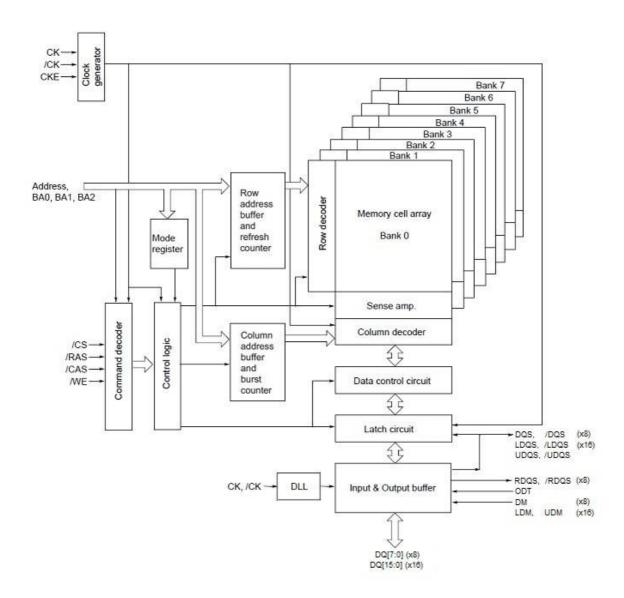
[Refer to section 6 in JEDEC Standard No. JESD79-2F and section 5 in JESD208]

### 4.14 Input Slew Rate Derating

[Refer to section 6 in JEDEC Standard No. JESD79-2F and section 5 in JESD208]

#### 4.15 ODT AC Electrical Characteristics

[Refer to section 6 in JEDEC Standard No. JESD79-2F and section 5 in JESD208]


#### 4.16 AC Input Test Conditions

Rev. 01 Dec. 22, 2020

[Refer to section 6 in JEDEC Standard No. JESD79-2F and section 5 in JESD208]



#### **Block Diagram** 5.





#### 6. Pin function

#### CK,/CK (input pins)

CK and /CK are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of Ck and negative edge of /CK. Output (read )data is referenced to the crossings of CK and /CK (both directions of crossing.)

### /CS (input pin)

all commands are masked when /CS is registered high. /CS provides for external rank selection on systems with multiple ranks. /CS is considered part of the command code.

### /RAS, /CAS, /WE (input pins)

/RAS, /CAS and /WE(along with /CS) define the command being entered.

#### A0 to A13 (input pins)

Provided the row address for Active commands and the column address and Auto Precharge bit for Read/Write commands to select one location out of the memory array in the respective bank. The address inputs also provide the op-code during mode register set commands.

| Configuration | Address (A0 to A13) |                |  |  |  |  |
|---------------|---------------------|----------------|--|--|--|--|
| Configuration | Row address         | Column address |  |  |  |  |
| x16           | AX0 to AX13         | AY0 to AY9     |  |  |  |  |

#### A10 (AP) (input pin)

A10 is sampled during a precharge command.

#### BAO, BA1, BA2 (input pins)

BAO, BA1 and BA2 define to which bank an active, read, write or precharge command is being applied. BA and BA1 also determines if the mode register or extended mode register is to be accessed during a MRS or EMRS(1), EMRS(2) cycle.

#### [Bank Select signal Table]

| Bank   | BA0 | BA1 | BA2 |  |  |  |  |  |
|--------|-----|-----|-----|--|--|--|--|--|
| Bank 0 | L   | L   | L   |  |  |  |  |  |
| Bank 1 | Н   | L   | L   |  |  |  |  |  |
| Bank 2 | L   | Н   | L   |  |  |  |  |  |
| Bank 3 | Н   | Н   | L   |  |  |  |  |  |
| Bank 4 | L   | L   | Н   |  |  |  |  |  |
| Bank 5 | Н   | L   | Н   |  |  |  |  |  |
| Bank 6 | Ĺ   | Н   | Н   |  |  |  |  |  |
| Bank 7 | Н   | Н   | Н   |  |  |  |  |  |

Remark: H=VIH, L=VIL



Doc. No. DSA3R2GE43JBFF.01 A3R2GE43JBF 2Gb DDR2 SDRAM

#### CKE (input pin)

CKE high activates, and CKE low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE low provides precharge power-down and Self Refresh operation (bank idle), or active power-down (row active in bank). CKE is synchronous for power down entry and exit, and for self refresh entry. CKE is asynchronous for self refresh exit. CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, /CK and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during self-refresh.

#### DM, UDM and LDM (input pins)

DM is an input mask signal for write data. Input data is masked when DM is sampled high coincident with that input data during a Write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS loading.

In x16 configuration, UDM controls upper byte (DQ8 to DQ15) and LDM controls lower byte (DQ0 to DQ7). In this datasheet, DM represents UDM and LDM.

#### DQ (input/output pins)

Bi-directional data bus.

### DQS, /DQS (UDQS, /UDQS, LDQS, /LDQS (input/output pins)

Output with read data, input with write data for source synchronous operation. Edge-aligned with read data, centered in write data. Used to capture write data. /DQS can be disable by EMRS.

In x16 configuration, UDQS, /UDQS and LDQS, /LDQS control upper byte (DQ8 to DQ15) and lower byte (DQ0 to DQ7). In this datasheet, DQS represents UDQS and LDQS, and /DQS represents /UDQS and /LDQS.

#### RDQS, /RDQS (output pins)

Differential Data Strobe for READ operation only. DM and RDQS functions are switch able by EMRS. These pins exist only in x8 configuration /RDQS output will be disable when /DQS is disabled by EMRS.

#### ODT (input pins)

ODT (On Die Termination control) is a registered high signal that enables termination resistance internal to the DDR II SDRAM. When enable, ODT is only applied to each DQ, DQS, /DQS, RDQS, /RDQS, and DM signal for x8 configurations. For x16 configuration, ODT is applied to each DQ, UDQS, /UDQS, LDQS, /LDQS, UDM, and LDM signal. The ODT pin will be ignored if the Extended Mode Register (EMRS) is programmed to disable ODT. Any time the EMRS enables the ODT function; ODT may not be driven high until eight clocks after the EMRS has been enabled.

#### VDD, VSS, VDDQ, VSSQ (power supply)

VDD and VSS are power supply pins for internal circuits. VDDQ and VSSQ are power supply pins for the output buffers.

### VDDL and VSSDL (power supply)

VDDL and VSSDL are power supply pins for DLL circuits.

#### **VREF** (Power supply)

SSTL\_18 reference voltage: (0.50±0.01) x VDDQ



## **Command Operation**

Operation or timing that is not specified is illegal, and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the speechified initialization sequence before normal operation can continue

#### 7.1 **Command Truth Table**

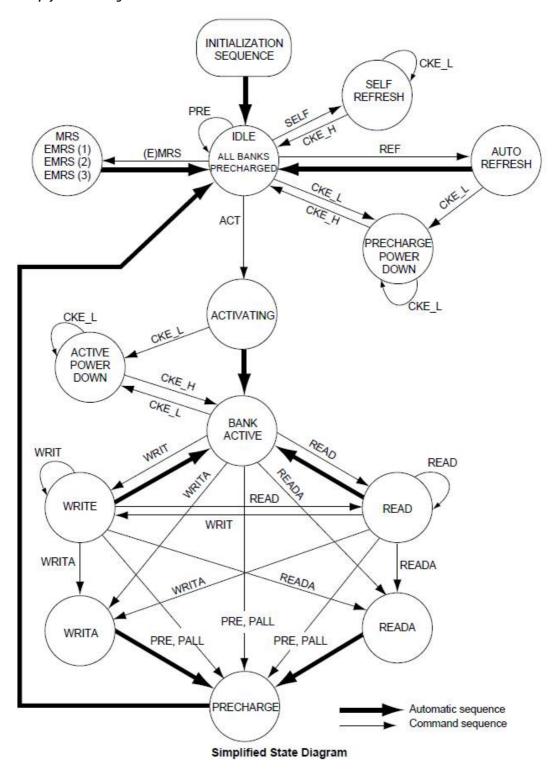
| Function                     | Comple of | CI      | KE      | /cs | /RAS | /CAS | /WE | BA2-BA0  | 442 444     | A10   | A9-A0 | Notes   |
|------------------------------|-----------|---------|---------|-----|------|------|-----|----------|-------------|-------|-------|---------|
| Function                     | Symbol    | Previou | Currnet | \C3 |      |      |     |          | A13-A11     |       |       |         |
| (Extended) Mode register set | (E)MRS    | Н       | Н       | L   | L    | L    | L   | Register | OF          | CODE  |       | 1       |
| Auto refresh                 | REF       | Н       | Н       | L   | L    | L    | Н   | Х        | Х           | Χ     | Х     | 1       |
| Self refresh entry           | SELF      | Н       | L       | L   | L    | L    | Н   | Х        | Х           | Χ     | Х     | 1       |
| Self refresh exit            | SELEX     | L       | Н       | Η   | Х    | Χ    | Χ   | Х        | Х           | Х     | х     | 1, 6    |
| Sell Tellesil exit           | JLLLX     | L       | 11      | L   | Н    | Η    | Н   | ^        | ^           | _ ^   |       |         |
| Single bank precharge        | PRE       | Н       | Н       | L   | L    | Η    | L   | BA       | Х           | L     | Х     | 1, 2    |
| Precharge all banks          | PALL      | Н       | Н       | L   | L    | Η    | L   | Х        | Χ           | Н     | Х     | 1       |
| Bank activate                | ACT       | Н       | Н       | ш   | L    | Η    | Н   | BA       | Row Address |       | SS    | 1, 2, 7 |
| Write                        | WRIT      | Н       | Н       | L   | Н    | L    | L   | BA       | CA          | L     | CA    | 1, 2, 3 |
| Write with auto precharge    | WRITA     | Н       | Н       | L   | Н    | L    | L   | BA       | CA          | Н     | CA    | 1, 2, 3 |
| Read                         | READ      | Н       | Н       | ш   | Н    | L    | Н   | BA       | CA          | L     | CA    | 1, 2, 3 |
| Read with auto precharge     | READA     | Н       | Н       | L   | Н    | L    | Н   | BA       | CA          | Н     | CA    | 1, 2, 3 |
| No operation                 | NOP       | Н       | Х       | L   | Н    | Н    | Н   | Х        | Х           | Χ     | Х     | 1       |
| Device deselect              | DESL      | Н       | Х       | Ι   | Х    | Χ    | Χ   | Х        | Х           | Χ     | Х     | 1       |
| Power down mode entry PDEN   |           |         |         | Η   | Х    | Χ    | Χ   | Х        | х           | Х     | Х     | 1 1     |
| Power down mode entry        | PDEN      | HL      |         | L   | Н    | Η    | Н   | ^        | ^           | ^     | ^     | 1, 4    |
| Power down mode exit         | PDEX      |         | Н       | Н   | Х    | Χ    | Х   | Х        | Х           | х х   | Х     |         |
| Power down mode exit         | PDEX      | L       | п       | L   | Н    | Н    | Н   |          | ^           | ^   ^ |       | 1, 4    |

### Notes:

- All DDR2 commands are defined by states of /CS, /RAS, /CAS, /WE and CKE at the rising edge of the clock
- Bank select (BAO, BA1 and BA2), determine which bank is to be operated upon
- Burst reads or writes should not be terminated other than specified as "Reads interrupted by a Read" in burst read command[READ] or "Writes interrupted by a Write" in burst write command [WRIT]
- The power down mode does not perform any refresh operations. The duration of power down is therefore limited by the refresh requirements of the device. Onc clock delay is required for mode entry and exit
- The state of ODT does not affect the states described in this table. The ODT function is no available during self-refresh
- Self-refresh exit is asynchronous
- 8-bank device sequential bank activation restriction: No more than 4 banks may be activated in a rolling tFAW window. Converting to clocks is done by dividing tFAW (ns) by tCK (ns) and rounding up to next integer value. As an example of the rolling window, if (tFAW/tCK) rounds up to 10 clocks, and an activate command is issued in clock N, no more than three further activate commands may be issued in clock N+1 through N+9.

#### 7.2 **CKE Truth Table**

[Refer to section 4 in JEDEC Standard No. JESD79-2F and section 3 in JESD208]


#### 7.3 Data Mask Truth Table

[Refer to section 4 in JEDEC Standard No. JESD79-2F and section 3 in JESD208]



#### **Functional Description** 8.

#### Simplified State Diagram 8.1



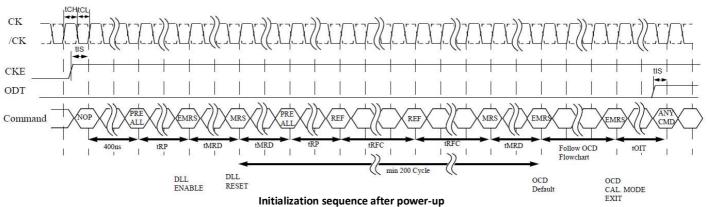


#### 8.2 **Basic functionality**

Read and write accesses to the DDR2 SDRAM are burst oriented; accesses start at a selected location and continue for the fixed burst length of four or eight in a programmed sequence. Accesses begin with the registration of an active command, which is then followed by a read or write command. The address bits registered coincident with the active command is used to select the bank and row to be accessed (BAO, BA1 and BA2 select the bank; A0 to A13 select the row). The address bits registered coincident with the read or write command are used to select the staring column location for the burs access and to determine if the auto precharge command is to be issued.

Prior to normal operation, the DDR2 SDRAM must be initialized. The following sections provide detailed information covering device initialization; register definition, command descriptions and device operation.

DDR2 SDRAMs must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operation.


#### 8.4 Power-Up and Initialization Sequence

The following sequence is required for power up and initialization

- 1. Apply power and attempt to maintain CKE below 0.2 x VDDQ (all other inputs may be undefined).
  - VDD, VDDL and VDDQ are driven from a single power converter output, AND
  - VTT is limited to 0.95V max, AND
  - VREF tracks VDDQ/2.
  - or
  - Apply VDD before or at the same time as VDDL.
  - Apply VDDL before or at the same time as VDDQ.
  - Apply VDDQ before or at the same time as VTT and VREF. At least one of these two sets of conditions must be met.
- 2. Start clock and maintain stable condition
- 3. For the minimum of 200µs after stable power and clock(CK, /CK), then apply [NOP] or [DESL] and take CKE high.
- 4. Wait minimum of 400ns then issue precharge all command. [NOP] or [DESL] applied during 400ns period.
- 5. Issue EMRS(2) command. (To issue EMRS(2) command, provide low to BAO and BA2, high to BA1)
- 6. Issue EMRS(3) command. (To issue EMRS(3) command, provide low to BA2, high to BA0 and BA1)
- 7. Issue EMRS(1) to enable DLL. (To issue DLL enable command, provide low to A0, high to BA0 and low to BA1, BA2 and A13)
- 8. Issue a mode register set command for DLL reset.

(To issue DLL reset command, provide high to A8 and low to BA0, BA1, BA2 and A13)

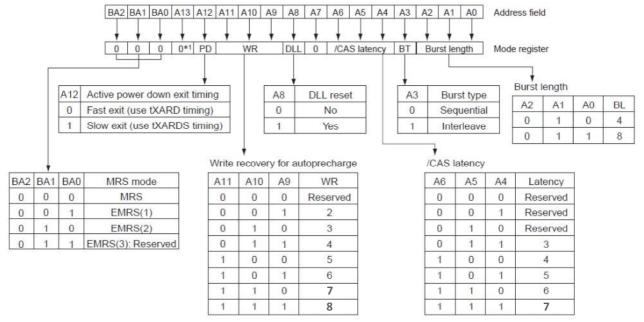
- 9. Issue precharge all command.
- 10. Issue 2 or more auto-refresh commands.
- 11. Issue a mode register set command with low to A8 to initialize device operation.
- (i.e. to program operating parameters without resetting the DLL.)
- 12. At least 200 clocks after step 8, issue EMRS (1) command with A9 = A8 = A7 = 1. Then issue EMRS (1) command with
- A9 = A8 = A7 = 0 with other operating parameters of EMRS (1).
- 13. The DDR2 SDRAM is now ready for normal operation.





#### 8.5 Programming the Mode Register and Extended Mode Registers

For application flexibility, burst length, burst type, /CAS latency, DLL reset function, write recovery time (tWR) are user defined variables and must be programmed with a mode register set command [MRS]. Additionally, DLL disable function, driver impedance, additive /CAS latency, ODT (On Die Termination), and single-ended strobe are also user defined variables and must be programmed with an extended mode register set command [EMRS]. Contents of the Mode Register (MR) or Extended Mode Registers (EMRS(#)) can be altered by reexecuting the MRS and EMRS commands. If the user chooses to modify only a subset of the MRS or EMRS variables, all variables must be redefined when the MRS or EMRS commands are issued.


MRS, EMRS and Reset DLL do not affect array contents, which means reinitialization including those can be executed any time after power-up without affecting array contents.

#### 8.6 DDR2 SDRAM Mode Register Set [MRS]

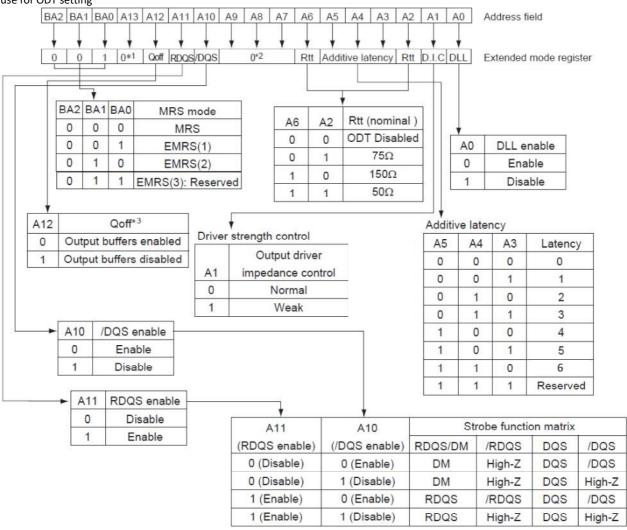
The mode register stores the data for controlling the various operating modes of DDRS2 SDRAM. It controls /CAS latency, burst length, burst sequence, test mode, DLL reset, tWR and various vendor specific options to make DDR2 SDRAM useful for various applications. The default value of the mode register is not defined, therefore the mode register must be written after power-up for proper operation. The mode register is written by asserting low on /CS, /RAS, /CAS, WE, BAO, BA1 and BA2, while controlling the state of address pins A0 to A13.

The DDR2 SDRAM should be in all bank precharge with CKE already high prior to writing into the mode register.

The mode register set command cycle time (tMRD) is required to complete the write operation to the mode register. The mode register contents can be changed using the same command and clock cycle requirements during normal operation as long as all banks are in the precharge state. The mode register is divided into various fields depending on functionality. Burst length is defined by A0 to A2 with options of 4 and 8 bit burst lengths. The burst length decodes are compatible with DDR SDRAM. Burst address sequence type is defined by A3, /CAS latency is defined by A4 to A6. The DDR2 doesn't support half clock latency mode. A8 is used for DLL reset. Write recovery time tWR is defined by A9 to A11. Refer to the table for specific codes.



#### Notes:


- 1. A13 is reserved for future use and must be programmed to 0 when setting the mode register.
- WR(min.)(Write Recovery for autoprecharge) is determined by tCK(max.) and WR(max.) is determined by tCK(min.) WR
  in clock cycles is calculated by dividing tWR(in ns) and rounding up to the next integer. (WR [cycles] = tWR (ns) / tCK
  (ns))
- 3. The mode register must be programmed to this value. This is also used with tRP to determine tDAL.



#### 8.7 DDR2 SDRAM Extended Mode Register [EMRS]

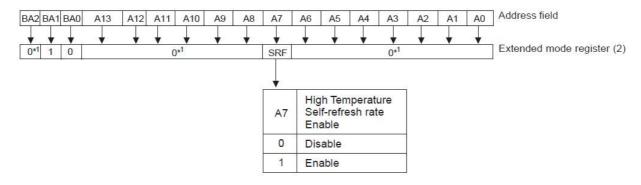
#### EMRS (1) Programming

The extended mode register (1) stores the data for enabling or disabling the DLL, output driver strength, additive latency, ODT, /DQS disable, RDQS enable. The default value of the extended mode register (1) is not defined, therefore the extended mode register (1) must be written after power-up for proper operation. The extended mode register (1) is written by asserting low on /CS, /RAS, /CAS, /WE, high on BAO and low on BA1, BA2 while controlling the states of address pins A0 to A13. The DDR2 SDRAM should be in all bank percharge with CKE already high prior to writing into the extended mode register (1). The mode register set command cycle time (tMRD) must be satisfied to complete the write operation to the extended mode register (1). Mode register contents can be changed using the same command and clock cycle requirements during normal operation as long as all banks are in the precharge state. A0 is used for DLL enable or disable. A1 is used for RDQS enable. A2 and A6 are use for ODT setting



### Notes:

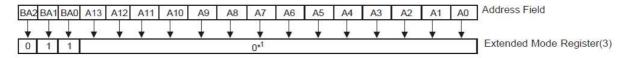
- 1. A13 is reserved for future use and must be programmed to 0 when setting the mode register.
- 2. It must be set to 1 first, and then set to 0 in initialization. Refer to the Power-Up and Initialization Sequence for detailed information.
- 3. Output disabled DQ, DQS, /DQS, RDQS, /RDQS. This feature is used in conjunction with DIMM IDD measurements when IDDQ is not desired to be included.




#### DLL Enable/Disable

The DLL must be enabled for normal operation. DLL enable is required during power up initialization, and upon returning to normal operation after having the DLL disabled. The DLL is automatically disabled when entering self refresh operation and is automatically re-enabled upon exit of self-refresh operation Any time the DLL is enabled (and subsequently reset), 200 clock cycles must occur before a read command can be issued to allow time for the internal clock to be synchronized with the external clock. Failing to wait for synchronization to occur may result in a violation of the tAC or tDQSCK parameters.

#### EMRS (2) Programming


The extended mode register (2) controls refresh related features. The default value of the extended mode register(2) is not defined, therefore the extended mode register (2) must be written after power-up for proper operation. The extended mode register (2) is written by asserting low on CS, /RAS, /CAS, /WE, high on BA1 and low on BA0, BA2 while controlling the states of address pins A0 to A13. The DDR2 SDRAM should be in all bank precharge with CKE already high prior to writing into the extended mode register (2). The mode register set command cycle time (tMRD) must be satisfied to complete the write operation to the extended mode register (2). Mode register contents can be changed using the same command and clock cycle requirements during normal operation as long as all banks are in the precharge state.



Note: 1. The rest bits in EMRS (2) is reserved for future use and all bits in EMRS (2) except A7 must be programmed to 0 when setting the extended mode register (2) during initialization.

#### **EMRS (2)**

#### EMRS (3) Programming: Reserved\*1



Note: 1. EMRS (3) is reserved for future use and all bits must be programmed to 0 when setting the extended mode register (3) during initialization.

### **EMRS (3)**





| 8.8  | ODT (On Die Termination)                                 |
|------|----------------------------------------------------------|
| 8.9  | Bank Activate Command                                    |
| 8.10 | Read and write access modes                              |
| 8.11 | Write Data Mask                                          |
| 8.12 | Precharge operation                                      |
| 8.13 | Auto precharge operation                                 |
| 8.14 | Refresh command                                          |
| 8.15 | Self refresh operation                                   |
| 8.16 | Power-down                                               |
| 8.17 | Asynchronous CKE LOW event                               |
| 8.18 | SSC (Spread Spectrum Clocking)                           |
| 8.19 | Input clock frequency change during precharge power down |
| 8.20 | No operation command                                     |
| 8.21 | Deselect command                                         |

[Refer to section 3 in JEDEC Standard No. JESD79-2F and section 2 in JESD208]



|        | Change History                                  |               |                                                                                      |  |  |  |  |  |
|--------|-------------------------------------------------|---------------|--------------------------------------------------------------------------------------|--|--|--|--|--|
|        | Document name: DSA3R2GE43JBFP.(Rev.#)           |               |                                                                                      |  |  |  |  |  |
| Rev. # | Who                                             | /ho When What |                                                                                      |  |  |  |  |  |
|        |                                                 |               | Derived from A3T1GE340JBFF.02;                                                       |  |  |  |  |  |
|        |                                                 |               | Removed x8 configuration, industrial, automotive grade 2,3, commercial low IDD6, and |  |  |  |  |  |
| 04     | CAE                                             | 2020 07 07    | Industrial low IDD6 options;                                                         |  |  |  |  |  |
| 01     | 01   SAE   2020-07-07                           | 2020-07-07    | Updated multi-die option in part number decoder;                                     |  |  |  |  |  |
|        |                                                 |               | Updated tRFC to 195 ns; added A13 in Package Ball Assignment;                        |  |  |  |  |  |
|        |                                                 |               | Updated Package outline drawing; listed TBD in DC Characteristics                    |  |  |  |  |  |
| 02     | SAE                                             | 2020-07-27    | Updated item format/note number on p6~p21;                                           |  |  |  |  |  |
| 02     | CAE                                             | 2020 40 42    | Updated Important Notice;                                                            |  |  |  |  |  |
| 03     | SAE                                             | 2020-10-13    | Removed the note of the Package outline drawing                                      |  |  |  |  |  |
| 04     | SAE                                             | 2020-11-05    | Updated part number in Ordering Information                                          |  |  |  |  |  |
|        | Document name updated to DSA3R2GE43JBFF.(Rev.#) |               |                                                                                      |  |  |  |  |  |
|        |                                                 |               | Derived from DSA3R2GE43JBFP.04;                                                      |  |  |  |  |  |
| 01     | SAE                                             | 2020-12-22    | Updated DC Characteristics;                                                          |  |  |  |  |  |
|        |                                                 |               | Removed preliminary and TBD signs                                                    |  |  |  |  |  |

### Important Notice:

Zentel DRAM products are not intended for medical implementation, airplane and transportation instrument, safety equipment, or any other applications for life support or where Zentel products failure could result in life loss, personal injury, or environment damage. Zentel customers who purchase Zentel products for use in such applications do so in their own risk and fully agree Zentel accepts no liability for any damage from this improper use.

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for DRAM category:

Click to view products by Zentel manufacturer:

Other Similar products are found below:

CT51264BF160B M366S0924FTS-C7A00 AS4C16M32MD1-5BCN HM514100AZ-80 K4S560432C-TC75 K4S641632H-UC60

AS4C16M32MD1-5BIN AS4C64M8D1-5TCN ATCA-7360-MEM-4G MN41C4256A-07 IS43LR16800G-6BLI MT48LC8M16A2F4-6A

IT:L DEMT46H128M16LFCK6ITA W972GG6KB-25 TR W97AH2KBVX2I IS43LD16640C-25BLI AS4C64M16D1A-6TCN

AS4C256M8D2-25BIN AS4C64M8D1-5BCN MT52L256M32D1PF-107 WT:B TR AS4C128M16MD2-25BCN AS4C8M16D1-5BCN

AS4C64M32MD2-25BCN AS4C128M16MD2A-25BIN AS4C128M32MD2-18BCN AS4C32M32MD2-25BCN IS43LR16800G-6BL

W971GG6SB-18 AS4C64M16D3B-12BINTR MT44K16M36RB-125E:A TR MT44K16M36RB-107E:A TR AS4C128M8D2A-25BIN

AS4C128M8D2A-25BCN NT5AD256M16D4-HR AS4C256M16D3C-93BCN AS4C128M16D3LC-12BIN AS4C128M16D3LC-12BCN

AS4C64M32MD1A-5BIN MT40A512M8SA-062E:F TR IS45S32800J-7TLA2 AS4C256M16D3LC-12BCN AS4C16M16SB-6TIN

AS4C16M16SB-7TCN K4B2G1646F-BCNB AS4C2M32SA-6TINTR AS4C16M16SB-6BIN MT48LC64M8A2P-75:C TR MT40A2G8JC-062E IT:E MT40A1G16KH-062E AIT:E IS43LR16800G-6BLI-TR