MONOSTABE / BISTABLE POLARIZED DIP RELAY

FEATURES

- Low profile for compact board spacing
- DC coils to 48 VDC
- High sensitivity with 96 mW pickup power
- Life expectancy to 20 million operations
- High switching capacity, $60 \mathrm{~W}, 250$ VA
- Fits standard 16 pin IC socket
- Minimum switching load $10 \mathrm{mV}, 10 \mu \mathrm{~A}$
- Epoxy sealed

- UL, CUR file E43203

CONTACTS

Arrangement	DPDT (2 Form C) bifurcated crossbar contacts
Ratings (max.) switched power switched current switched voltage	(resistive load) 60 W or 250 VA 3 A 30 VDC* or 125 VAC * Note: If switching voltage is greater than 30 VDC, special precautions must be taken. Please contact the factory.
Rated Loads UL/CUR	$\mathbf{A g P d} / \mathbf{A g}+\mathbf{A u}$ and $\mathbf{A g P d} / \mathbf{A g P d}+\mathbf{A u}$ versions 0.5 A at 60 VDC , resistive load ${ }^{[1][2]}$ 2 A at 30 VDC , resistive load ${ }^{[1][2]}$ 2 A at 125 VAC, resistive load ${ }^{[1][2]}$

AgPd/Ag+Au versions
3 A at 40 VDC , resistive load, $10 \mathrm{kcyc} .40^{\circ} \mathrm{C}^{[1]}$

$\mathbf{A g}+\mathbf{A u} / \mathbf{A g}+\mathbf{A u}$ versions

2 A at 30 VDC, resistive load ${ }^{[3]}$
2 A at 125 VAC , resistive load ${ }^{[3]}$
3 A at 30 VDC , resistive load, 50 k cyc., $70^{\circ} \mathrm{C}{ }^{[3]}$
Note: Monostable high power coil types are not UL/CUR recognized.

Contact materials	Palladium silver against gold plated silver $(\mathrm{AgPd} / \mathrm{Ag}+\mathrm{Au})^{[1]}$ Palladium silver against gold plated palladium silver $(\mathrm{AgPd} / \mathrm{AgPd}+\mathrm{Au})^{[2]}$
Gold plated silver against gold plated silver $(\mathrm{Ag}+\mathrm{Au} / \mathrm{Ag}+\mathrm{Au})^{[3]}$	
Minimum load	$10 \mathrm{mV}, 10 \mu \mathrm{~A}($ ref. $)$
Contact resistance initial	$\leq 100 \mathrm{~m} \Omega($ at 10 mA$)$

COIL	
Nominal coil voltage	See coil voltage specifications tables
Dropout voltage monostable types	$>10 \%$ of nominal coil voltage
Coil power	(typ. at $23^{\circ} \mathrm{C}$) 200 mW (standard coil), 150 mW (sensitive coil), monostable types $240-260 \mathrm{~mW}$ (high power coil) single coil latching $100-144 \mathrm{~mW}$ (standard coil) 75 mW (sensitive coil) dual coil latching $150-282 \mathrm{~mW}$ (standard coil) 150 mW (sensitive coil)
Max. temperature	Class F insulation system

GENERAL DATA

Life Expectancy mechanical electrical	(minimum operations) 2×10^{7} See UL/CUR Rated Loads
Operate/Set Time	at nominal coil voltage 3 ms (typ.), 5 ms (max.)
Release/Reset Time monostable types latching types	at nominal coil voltage 3 ms (typ.), 4 ms (max.), w/o coil suppression 3 ms (typ.), 5 ms (max.)
Bounce Time	3 ms (typ.)

ZETTLER

ORDERING DATA

Example ordering data

AZ832-2C-12DSE	Non-latching monostable type, 2 Form C, 12 VDC nominal coil voltage, sensitive coil, contacts from palladium silver against gold plated silver
AZ832P2-2C-5DEA	Dual coil latching type, 2 Form C, 5 VDC nominal coil voltage, contacts from palladium silver against gold plated palladium silver

COIL VOLTAGE SPECIFICATIONS - MONOSTABLE TYPES
Monostable non-latching standard type

Nominal Coil VDC	Must Operate VDC	Max. Cont. VDC	Nom. Power mW	Resistance Ohm $\pm 10 \%$
3	2.3	6.0	200	45
5	3.75	10.0		125
6	4.5	12.0		180
9	6.75	18.0		405
12	9.0	24.0		720
15	11.25	30.0		1125
24	18.0	48.0		2880
48	36.0	96.0		11520

Monostable non-latching sensitive type

Nominal Coil VDC	Must Operate VDC	Max. Cont. VDC	Nom. Power mW	Resistance Ohm $\pm 10 \%$
3	2.4	7.0		60
5	4.0	11.5	150	167
6	4.8	13.8		240
9	7.2	20.8		540
12	9.6	27.7		960
15	12.0	34.6		1500
24	19.2	55.4		3840

Monostable non-latching high power type

Nominal Coil VDC	Must Operate VDC	Max. Cont. VDC	Nom. Power mW	Resistance Ohm $\pm 10 \%$
3	2.25	5.7	250	36
5	3.75	9.2	263	95
6	4.5	11.0	240	150
12	9.0	23.2	240	600
24	18.0	44.6	261	2210
48	36.0	93.7	236	9750

Note: All values at $23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$, upright position, terminals downward.

COIL VOLTAGE SPECIFICATIONS - LATCHING TYPES

Single coil latching standard type

Nominal Coil VDC	Must Operate VDC	Max. Cont. VDC	Nom. Power mW	Resistance Ohm $\pm 10 \%$
3	2.25	8.4		90
5	3.75	14.0		250
6	4.5	17.0	100	360
9	6.75	25.0		810
12	9.0	34.0		1440
15	11.25	42.0		2220
24	18.0	56.0	144	4000

Single coil latching sensitive type

Nominal Coil VDC	Must Operate VDC	Max. Cont. VDC	Nom. Power mW	Resistance Ohm $\pm 10 \%$
3	2.4	9.6		120
5	4.0	16.0	75	330
6	4.8	19.0		480
9	7.2	29.0		1080
12	9.6	39.0		1920
15	12.0	43.0		3000
24	19.2	78.0		7680

Dual coil latching standard type

Nominal Coil VDC	Must Operate VDC	Max. Cont. VDC	Nom. Power mW	Resistance Ohm $\pm 10 \%$
3	2.25	6.0		45
5	3.75	10.0		125
6	4.5	12.0	200	180
9	6.75	18.0		405
12	9.0	24.0		720
15	11.25	30.0		1125
24	18.0	48.0	282	2040

Dual coil latching sensitive type

Nominal Coil VDC	Must Operate VDC	Max. Cont. VDC	Nom. Power mW	Resistance Ohm $\pm 10 \%$
3	2.4	6.9		60
5	4.0	11.5	150	167
6	4.8	13.8		240
9	7.2	20.8		540
12	9.6	27.7		960
15	12.0	34.6		1500
24	19.2	55.4		3840

Note: All values at $23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$, upright position, terminals downward.

ZETTLER

AZ832/AZ832P

MECHANICAL DATA

Dimensions in inches with metric equivalents in parentheses. Tolerance: $\pm .010$ Pin dimensions given without tin coating. Pin grid is a multiple of 0.1 "

* Note: Pins only for dual coil latching versions

WIRING DIAGRAMS

Viewed towards terminals

Monostable non-latching types

Bistable single coil latching types

Bistable dual coil latching types

SET $\triangleleft \quad \square$ RESET

NOTES

1. All values at reference temperature of $23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$ unless stated otherwise.
2. Relay has a fixed coil polarity.
3. Keep away from strong magnetic fields to avoid alterations of "Must Operate voltage".
4. For isolation between the relay's magnetic fields, it is recommended that at least a $2 "(5.0 \mathrm{~mm})$ space is provided between adjacent relays.
5. Relay may pull in or set/reset with less than "Must Operate" value.
6. "Max. Continuous Voltage" is the maximum voltage the coil can endure for a short period of time.
7. For monostable non-latching types: Coil suppression circuits such as diodes, etc. in parallel to the coil will lengthen the release time.
8. For bistable latching types: Initial state of contacts may be changed during transportation or shock.
9. For bistable latching types: Recommended set / reset pulse width is 50 ms to 100 ms .
10. For dual coil latching types: Do not power set and reset coils simultaneously.
11. The minimum load values are for reference only. The part's suitability has to be confirmed in the application.
12. Relay adjustment may be affected if excessive shock is applied to the relay.
13. Relay adjustment may be affected if undue pressure is exerted on the relay case.
14. Specifications subject to change without notice.

ZETTLER

AZ832 / AZ832P

DISCLAIMER

This product specification is to be used in conjunction with the application notes which can be downloaded from the regional ZETTLER relay websites. The specification provides an overview of the most significant part features. Any individual applications and operating conditions are not taken into consideration. It is recommended to test the product under application conditions. Responsibility for the application remains with the customer. Proper operation and service life cannot be guaranteed if the part is operated outside the specified limits.

ZETTLER GROUP

Building on a foundation of more than a century of expertise in German precision engineering, ZETTLER Group is a world-class enterprise, engaged in the design, manufacturing, sales and distribution of electronic components. Our industry leadership is based on a unique combination of engineering competence and global scale.

For more information on other ZETTLER Group companies, please visit zettler-group.com. For support on this product or other ZETTLER relays, please visit one of the group sites below.

SITES FOR ZETTLER RELAYS

NORTH AMERICA

American Zettler, Inc.
www.azettler.com
sales@azettler.com

EUROPE

Zettler Electronics, GmbH www.zettlerelectronics.com office@zettlerelectronics.com

Zottler Electronics, Poland
www.zettlerelectronics.pl
office@zettlerelectronics.pl

CHINA

Zettler Group, China
www.zettlercn.com
relay@zettlercn.com

ASIA PACIFIC
Zettler Electronics (HK) Ltd.
www.zettlerhk.com
sales@zettlerhk.com

ZETTLER

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Zettler manufacturer:
Other Similar products are found below :
PCN-105D3MH,000 59641F200 5JO-1000CD-SIL 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2-US-AC120 LY2-USDC24 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110 M115C60 M115N010 M115N0150 603-12D 60HE1-5DC 60HE2S-12DC 61211T0B4 61212T400 61222Q400 61243B600 $\underline{61243 C 500}$ 61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 61311QOA4 $\underline{61311 \mathrm{~T} 0 \mathrm{D} 6} \underline{61311 \mathrm{TOA} 6} \underline{61311 \mathrm{TOA} 7} \underline{61311 \mathrm{TOB} 3} \underline{61311 \mathrm{TOB} 4} \underline{61311 \mathrm{U} 0 \mathrm{~A} 6} \underline{61312 \mathrm{Q} 600} \underline{61312 \mathrm{~T} 400} \underline{61312 \mathrm{~T} 600} \underline{61313 \mathrm{U} 200} \underline{61313 \mathrm{U} 400}$

