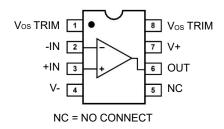
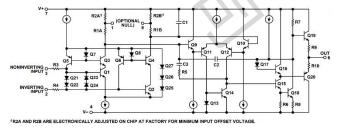
HX07-S General Purpose Amplifier

General Description

The HX07-S is an industry standard for instrumentation applications due to its excellent accuracy and stability. It offers a wide input voltage range of ±13 V minimum, high CMRR of 106 dB, and high input impedance, ensuring high accuracy in the noninverting circuit configuration. Even at high closed-loop gains, the HX07-S maintains excellent linearity and gain accuracy. It exhibits outstanding stability of offsets and gain over time and variations in temperature. With its accuracy and stability, combined with the freedom from external nulling, the HX07-S has become widely recognized and used in the instrumentation industry.

Features

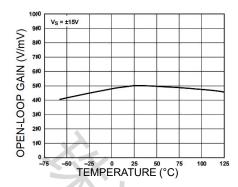

- Low VOS: maximum 75 μV
- Low VOS drift: maximum 1.3 µV/°C
- Low noise: maximum 0.6 μV p-p
- Ultrastable vs. time: maximum 1.5 μV per month
- Wide supply voltage range: ±3V to ±18 V
- Wide input voltage range: typical ±14 V
- 125°C temperature-tested dice


Applications

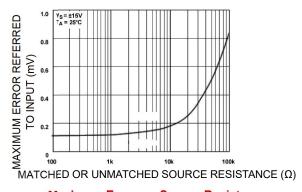
- Wireless base station control circuits
- Optical network control circuits
- Instrumentation
- Sensors and controls
 - Thermocouples
 - Strain bridges
 - Shunt current measurements
 - Resistor thermal detectors (RTDs)
- Precision filters

PIN CONFIGURATIONS

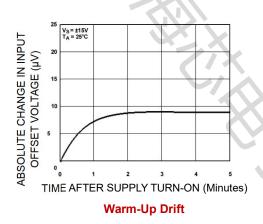
Simplified Schematic

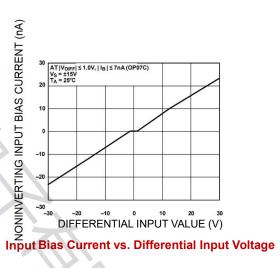

Version 1.1 - 1 - Date: Oct. 2023

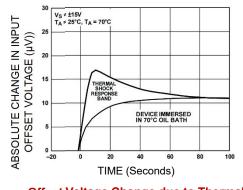
ZHHXDZ 珠海海芯电子有限公司

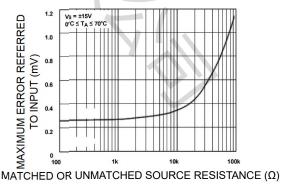

www.haixindianzi.com

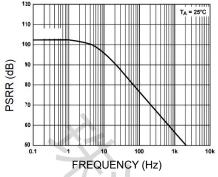
LECTRICAL CHARACTER								
Parameter	Symbol	Conditions	Min	Тур	Max	Unit		
PUT CHARACTERISTICS		·						
A = 25°C								
Input Offset Voltage	Vos			60	150	μV		
Long-Term VOS Stability	Vos/Time			0.4	2.0	μV/Montl		
Input Offset Current	los			0.8	6.0	nA		
Input Bias Current	В			±1.8	±7.0	nA		
Input Noise Voltage	e _n p-p	0.1 Hz to 10 Hz		0.38	0.65	μV p-p		
		fo = 10 Hz		10.5	20.0			
Input Noise Voltage Density	en	f _O = 100 Hz ^C		0.2	13.5			
		fo = 1 kHz		9.8	11.5			
Input Noise Current	l₁ p-p			15	35	рА р-р		
		fo = 10 Hz		0.35	0.90			
Input Noise Current Density	h	f _O = 100 Hz ^C		0.15	0.27	pA/√Hz		
		fo = 1 kHz		0.13	0.18			
Input Resistance, Differential Mode	Rin		8	33		ΜΩ		
Input Resistance, Common Mode	RINCM			120		GΩ		
Input Voltage Range	IVR		±13	±14		V		
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±13V	100	120		dB		
Power Supply Rejection Ratio	PSRR	Vs = ±3 V to ±18 V		7	32	μV/V		
Large Signal Voltage Gain	Avo	$R_{\perp} \ge 2 \text{ k}\Omega, V_{\odot} = \pm 10 \text{ V}$	120	400		V/Mv		
	Avo	$R_L \ge 500 \Omega$, $V_0 = \pm 0.5 V$, $V_S = \pm 3 V$	100	400				
0°C ≤TA ≤+85°C								
Input Offset Voltage	Vos			85	250	μV		
Voltage Drift Without External Trim	TCVos			0.5	1.8	μV/°C		
Voltage Drift with External Trim	TCVosn	R _P = 20 kΩ		0.4	1.6	μV/°C		
Input Offset Current	los			1.6	8.0	nA		
Input Offset Current Drift	TClos			12	50	pA/°C		
Input Bias Current	В			±2.2	±9.0	nA		
Input Bias Current Drift	TClB			18	50	pA/°C		
Input Voltage Range	IVR		±13	±13.5		V		
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±13 V	97	120		dB		
Power Supply Rejection Ratio	PSRR	V _S = ±3 V to ±18 V	100	10	51	μV/V		
Large Signal Voltage Gain	Avo	$R_L \ge 2 \text{ k}\Omega, V_O = \pm 10 \text{ V}$	100	400		V/mV		
JTPUT CHARACTERISTICS								
A = 25°C			M					
	l	R _L ≥ 10 kΩ	±12.0					
Output Voltage Swing	Vo	R _L ≥ 2 kΩ	±11.5	±12.8		V		
		R _L ≥ 1 kΩ		±12.0				
40°C ≤TA ≤+85°C								
Output Voltage Swing	Vo	R _L ≥ 2 kΩ	±12	±12.6		V		
YNAMIC PERFORMANCE								
A = 25°C								
Slew Rate	SR	R _L ≥ 2 kΩ	0.1	0.3		V/µs		
Closed-Loop Bandwidth	BW	A _{VOL} = 1 ^E	0.4	0.6		MHz		
Open-Loop Output Resistance	R₀	V _O = 0, I _O = 0		60		Ω		
	P₄	Vs =±15V, No load		80	150	mW		
Power Consumption	P ₋							
Power Consumption Offset Adjustment Range	Pd	$V_S = \pm 3 \text{ V}$, No load $R_P = 20 \text{ k}\Omega$		4 ±4	8	mV		


TYPICAL PERFORMANCE CHARACTERISTICS

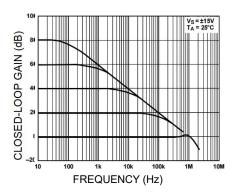



Open-Loop Gain vs. Temperature

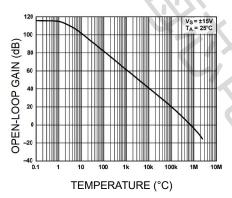

Maximum Error vs. Source Resistance

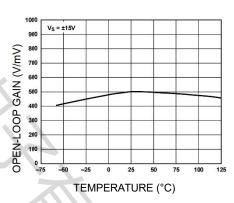


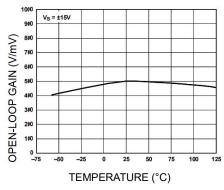
Offset Voltage Change due to Thermal

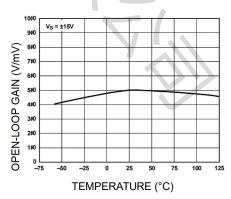


Maximum Error vs. Source Resistance

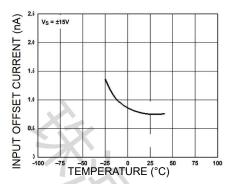

Version 1.1 - 3 -Date: Oct. 2023


PSRR vs. Frequency

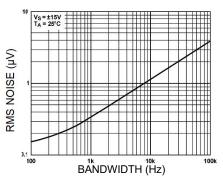

Closed-Loop Frequency Response for Various Gain


Open-Loop Gain vs. Temperature

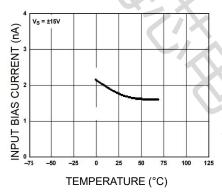
Open-Loop Gain vs. Temperature

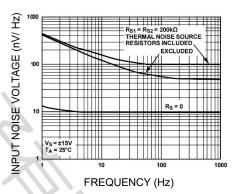


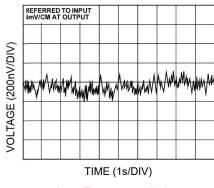
Open-Loop Gain vs. Temperature

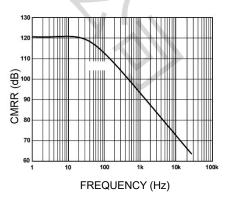


Open-Loop Gain vs. Temperature


Version 1.1 - 4 - Date: Oct. 2023

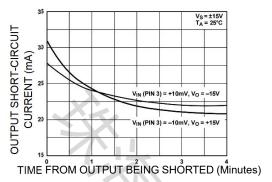

Input Offset Current vs. Temperature


Input Wideband Noise vs. Bandwidth, 0.1 Hz to Frequency Indicated

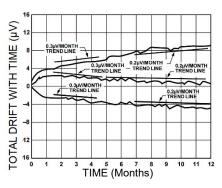

Input Bias Current vs. Temperature

Total Input Noise Voltage vs. Frequency

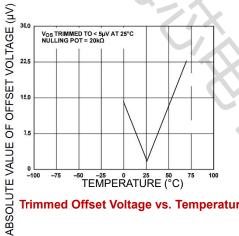
Low Frequency Noise

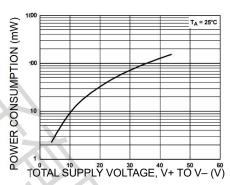


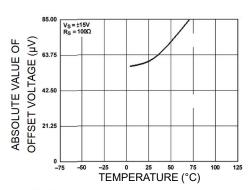
CMRR vs. Frequency


Version 1.1 -5 - Date: Oct. 2023

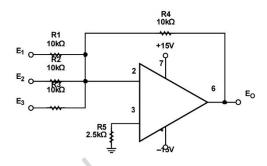
ZHHXDZ 珠海海芯电子有限公司


www.haixindianzi.com


Output Short-Circuit Current vs. Time

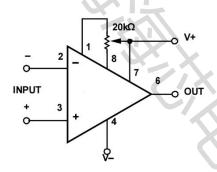

Offset Voltage Drift vs. Time

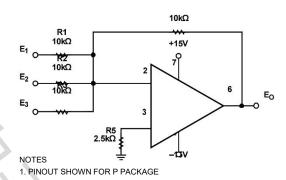
Trimmed Offset Voltage vs. Temperature

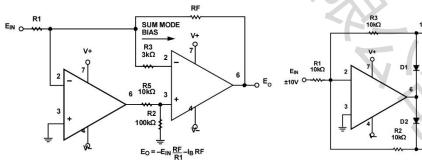


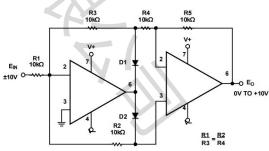
Power Consumption vs. Power Supply

Untrimmed Offset Voltage vs. Temperature

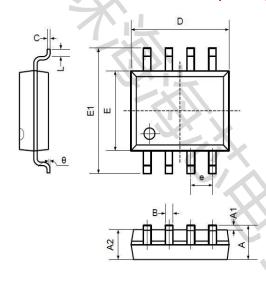

- 6 -Version 1.1 Date: Oct. 2023

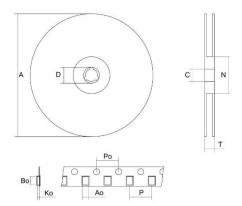

Typical Low Frequency Noise Circuit

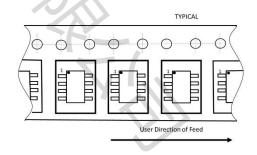

High Speed, Low VOS Composite Amplifier


Optional Offset Nulling Circuit

TEN Test Circuit and Voltage Waveforms


Typical Offset Voltage Test Circuit


Absolute Value Circuit


DIMENSIONAL DRAWINGS

SOP-8 (Package Outline Dimensions)

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
В	0.330	0.510	0.013	0.020	
С	0.190	0.250	0.007	0.010	
D	4.780	5.000	0.188	0.197	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.300	0.228	0.248	
е	1.270TYP		0.050TYP		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

Package Type	package	quantity		
SOP-8	Taping	2500		

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Zhuhai Haixin Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "zhuhai Haixindianzi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.haixindianzi.com)

Zhuhai Haixin makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Zhuhai Haixin relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product Haixin Zhuhai demand that the Zhuhai Haixin of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Zhuhai Haixin purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Zhuhai Haixin products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein Haixin product failure could lead to personal injury or death, use or sale of products used in Zhuhai Haixin such applications using client did not express their own risk. Contact your authorized Zhuhai Haixin people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the Haixin act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Version 1.1 - 9 - Date: Oct. 2023

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by ZHHXDZ manufacturer:

Other Similar products are found below:

430227FB LT1678IS8 058184EB NCV33202DMR2G NJM324E M38510/13101BPA NTE925 AZV358MTR-G1 AP4310AUMTR-AG1
AZV358MMTR-G1 SCY33178DR2G NCV20034DR2G NTE778S NTE871 NTE937 NJU7057RB1-TE2 SCY6358ADR2G
NJM2904CRB1-TE1 UPC4570G2-E1-A UPC4741G2-E1-A UPC4574GR-9LG-E1-A NJM8532RB1-TE1 EL2250CS EL5100IS EL5104IS
EL5127CY EL5127CYZ EL5133IW EL5152IS EL5156IS EL5162IS EL5202IY EL5203IY EL5204IY EL5210CS EL5210CYZ
EL5211IYE EL5220CY EL5223CLZ EL5223CR EL5224ILZ EL5227CLZ EL5227CRZ EL5244CS EL5246CS EL5246CSZ EL5250IY
EL5251IS EL5257IS EL5260IY