2A，18V，500KHz，Synchronous Step－Down DC／DC Converter

FEATURES

－ 4.7 V to 18 V input voltage
－Output adjustable from 0.6 V to 15 V
－Output current up to 2A
－Integrated $140 \mathrm{~m} \Omega / 90 \mathrm{~m} \Omega$ power MOSFET switches
－Shutdown current $3 \mu \mathrm{~A}$ typical
－Efficiency up to 95%
－Fixed frequency 500 KHz
－Internal soft start
－Over current protection and Hiccup
－Over temperature protection
－RoHS Compliant and 100\％Lead（Pb）Free

APPLICATIONS

－Distributed power systems
－Networking systems
－FPGA，DSP，ASIC power supplies
－Notebook computers
－Green electronics or appliance

DESCRIPTION

The ZTP7192Y is a high－frequency，synchronous， rectified，step－down，switch－mode converter with internal power MOSFETs．It offers a very compact solution to achieve a 2A continuous output current over a wide input supply range，with excellent load and line regulation．The ZTP7192Y has synchronous－mode operation for higher efficiency over the output current－load range．
Current－mode operation provides fast transient response and eases loop stabilization．
Protection features include over－current protection and thermal shutdown．
The ZTP7192Y requires a minimal number of readily available，standard external components and is available in space－saving TSOT23－6L package．

Pins Configuration

Top View TSOT23－6L

Typical Application Circuit

Note：R5 and C7 are optional．
Details please see the DVT report．

Absolute Maximum Ratings

Supply Voltage V_{IN} -0.3 V to +19 V
Switch Node V $\mathrm{sw}^{\text {w }}$
\qquad

Boost $\mathrm{V}_{\text {Bоот }}$ -0.3 V to $\mathrm{V}_{1 \mathrm{~N}}+0.3 \mathrm{~V}$

All Other Pins $\mathrm{V}_{\mathrm{sw}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{sw}}+6 \mathrm{~V}$

Power Dissipation＠ $25^{\circ} \mathrm{C}$ ．．1．2W
Junction Temperature $+150^{\circ} \mathrm{C}$
Lead Temperature ．．$+260^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD，HBM 2KV
ESD，MM ．．．200V
CAUTION：Stresses above those listed in＂Absolute Maximum Ratings＂may cause permanent damage to the device．This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied．

Electro－Static Discharge Sensitivity

ThisThis integrated circuit can be damaged by ESD． It is recommended that all integrated circuits be handled with proper precautions．Failure to observe proper handling and installation procedures can cause damage．ESD damage can range from subtle performance degradation to complete device failure．

Recommended Operating Conditions

Supply Voltage V_{IN}
Output Voltage $\mathrm{V}_{\text {Out }}$ 0.6 V to $\mathrm{V}_{\mathrm{IN}^{2}}-3 \mathrm{~V}$

Operating Temperature Range
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Package Thermal Characteristics

TSOT23－6L：
Thermal Resistance，θ_{JA} ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $100^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance，θ_{Jc}
$55^{\circ} \mathrm{C} / \mathrm{W}$

Pins Description

TSOT 23－6L	Symbol	Description
1	BOOT	High－side gate drive boost input．
2	GND	Ground．
3	FB	Feedback input．
4	EN	Enable input．
5	IN	Power input．
6	SW	Power switching output．

Functional Block Diagram

Electrical Specifications

（ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=+12 \mathrm{~V}$ ，unless otherwise noted．）

PARAMETER	Symbol	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	$\mathrm{V}_{\text {IN }}$		4.7		18	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$		0.6		15	V
Shutdown Supply Current		$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}$		3	6	$\mu \mathrm{A}$
Supply Current		$\mathrm{V}_{\mathrm{EN}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0.64 \mathrm{~V}$		0.7		mA
Feedback Voltage	$\mathrm{V}_{\text {FB }}$	$4.7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 18 \mathrm{~V}$	0.588	0.6	0.612	V
Feedback Over－voltage Threshold				0.66		V
Error Amplifier Voltage Gain＊	$\mathrm{A}_{\text {EA }}$			1000		V／V
High－Side Switch－On Resistance＊	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) 1}$			140		$\mathrm{m} \Omega$
Low－side Switch－On Resistance＊	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) 2}$			90		$\mathrm{m} \Omega$
High－Side Switch Leakage Current		$\begin{gathered} \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SW}}=0 \mathrm{~V}, \\ \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \end{gathered}$			10	$\mu \mathrm{A}$
Upper Switch Current Limit		Minimum Duty Cycle	3	3.6		A
Lower Switch Current Limit		From Drain to Source		0		A
Oscillation Frequency	$\mathrm{F}_{\text {osc1 }}$		400	500	600	KHz
Short Circuit Oscillation Frequency	Fosc2	$\mathrm{V}_{\text {FB }}=0 \mathrm{~V}$	100	125	150	KHz
Maximum Duty Cycle	$\mathrm{D}_{\text {MAX }}$	$\mathrm{V}_{\mathrm{FB}}=0.5 \mathrm{~V}$		90		\％
Minimum On Time＊				120		ns
EN Falling Threshold Voltage		$\mathrm{V}_{\text {EN }}$ Falling		1.12		V
EN Rising Threshold Voltage		$\mathrm{V}_{\text {EN }}$ Rising		1.22		V
Input Under Voltage Lockout Threshold		$\mathrm{V}_{\text {IN }}$ Rising		3.5		V
Input Under Voltage Lockout Threshold Hysteresis				240		mV
Soft－Start Period				1		ms
Thermal Shutdown＊				150		${ }^{\circ} \mathrm{C}$

＊Guaranteed by design，not tested．

Typical Characteristics

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3.3 \mathrm{~V}, \mathrm{~L} 1=4.7 \mu \mathrm{H}, \mathrm{C} 1=10 \mu \mathrm{~F}, \mathrm{C} 2=10 \mu \mathrm{~F} \times 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．

Efficiency

APPLICATION INFORMATION

Overview

The ZTP7192Y is a synchronous rectified，current－mode， step－down regulator．It regulates input voltages from 4.7 V to 18 V down to an output voltage as low as 0.6 V ， and supplies up to 2A of load current．
The ZTP7192Y uses current－mode control to regulate the output voltage．The output voltage is measured at FB through a resistive voltage divider and amplified through the internal transconductance error amplifier． The converter uses internal N－Channel MOSFET switches to step－down the input voltage to the regulated output voltage．Since the high side MOSFET requires a gate voltage greater than the input voltage，a boost capacitor connected between SW and BOOT is needed to drive the high side gate．The boost capacitor is charged from the internal 5 V rail when SW is low．
When the ZTP7192Y FB pin exceeds 10% of the nominal regulation voltage of 0.6 V ，the over voltage comparator is tripped，forcing the high－side switch off．

Pins Description

BOOT：High－Side Gate Drive Boost Input．BOOT supplies the drive for the high－side N －Channel MOSFET switch． Connect a $0.1 \mu \mathrm{~F}$ or greater capacitor from SW to BOOT to power the high side switch．

IN：Power Input．IN supplies the power to the IC，as well as the step－down converter switches．Drive IN with a 4.7 V to 18 V power source．Bypass IN to GND with a suitably large capacitor to eliminate noise on the input to the IC．

SW：Power Switching Output．SW is the switching node that supplies power to the output．Connect the output LC filter from SW to the output load．Note that a capacitor is required from SW to BOOT to power the high－side switch．

GND：Ground．

FB：Feedback Input．FB senses the output voltage to regulate that voltage．Drive FB with a resistive voltage divider from the output voltage．The feedback threshold is 0.6 V ．

EN：Enable Input．EN is a digital input that turns the regulator on or off．Drive EN high to turn on the regulator，drive it low to turn it off．Pull up with $100 \mathrm{k} \Omega$ resistor for automatic startup．

Setting the Output Voltage

The external resistor divider sets the output voltage．The feedback resistor R1 also sets the feedback－loop bandwidth through the internal compensation capacitor （see the Typical Application circuit）．Choose R1 around $10 \mathrm{k} \Omega$ ，and R2 by：

$$
\mathrm{R} 2=\mathrm{R} 1 /\left(\mathrm{V}_{\text {OUT }} / 0.6 \mathrm{~V}-1\right)
$$

Use a network below for when $\mathrm{V}_{\text {out }}$ is low．

Figure 1：Feedback Network．

Table 1 lists the recommended resistors value for common output voltages．$(\mathrm{RT}=0)$

$\mathrm{V}_{\text {OUT }}(\mathrm{V})$	$\mathrm{R} 1(\mathrm{~K} \Omega)$	$\mathrm{R} 2(\mathrm{~K} \Omega)$
1.05	$95(1 \%)$	$126.7(1 \%)$
1.2	$90(1 \%)$	$90(1 \%)$
1.8	$70(1 \%)$	$35(1 \%)$
2.5	$46.7(1 \%)$	$14.7(1 \%)$
3.3	$20(1 \%)$	$4.4(1 \%)$
5	$41.4(1 \%)$	$5.6(1 \%)$

Table 1：Resistor selection for common output voltages．

Rt is used to set control loop＇s bandwidth，which is proportional to the relation by R1，R2，RT：

$$
1 /\left[(\mathrm{Rt}+20 \mathrm{k})^{*}(1+\mathrm{R} 1 / \mathrm{R} 2)+\mathrm{R} 1\right]
$$

So Increase RT \＆Decrease R1\＆R2 value（keeping R1／R2 ratio），the bandwidth can be kept the same（the relation value need to be the same）

Inductor

The inductor is required to supply constant current to the output load while being driven by the switched input voltage．A larger value inductor will result in less ripple current that will result in lower output ripple voltage．However，the larger value inductor will have a larger physical size，higher series resistance，and／or
lower saturation current．A good rule for determining the inductance to use is to allow the peak－to－peak ripple current in the inductor to be approximately 30% of the maximum switch current limit．Also，make sure that the peak inductor current is below the maximum switch current limit．The inductance value can be calculated by：

$$
\mathrm{L}=\left[\mathrm{V}_{\text {OUT }} /\left(f_{S} \times \Delta \mathrm{L}_{\mathrm{L}}\right)\right] \times\left(1-V_{\text {OUT }} / V_{\text {IN }}\right)
$$

Where $\mathrm{V}_{\text {OUT }}$ is the output voltage， $\mathrm{V}_{\text {IN }}$ is the input voltage， f_{S} is the switching frequency，and ΔL_{L} is the peak－to－peak inductor ripple current．
Choose an inductor that will not saturate under the maximum inductor peak current．The peak inductor current can be calculated by：

$$
I_{\text {LP }}=I_{\text {LOAD }}+\left[V_{\text {OUT }} /\left(2 \times f_{S} \times L\right)\right] \times\left(1-V_{\text {OUT }} / V_{\text {IN }}\right)
$$

Where $I_{\text {LOAD }}$ is the load current．
The choice of which style inductor to use mainly depends on the price vs．size requirements and any EMI requirements．

Optional Schottky Diode

During the transition between high－side switch and low－side switch，the body diode of the low－side power MOSFET conducts the inductor current．The forward voltage of this body diode is high．An optional Schottky diode may be paralleled between the SW pin and GND pin to improve overall efficiency．Table 2 lists example Schottky diodes and their Manufacturers．

Part Number	Voltage and Current Rating	Vendor
B130	$30 \mathrm{~V}, 1 \mathrm{~A}$	Diodes Inc．
SK13	$30 \mathrm{~V}, 1 \mathrm{~A}$	Diodes Inc．
MBRS130	$30 \mathrm{~V}, 1 \mathrm{~A}$	International Rectifier

Table 2：Diode selection guide．

Input Capacitor

The input current to the step－down converter is discontinuous，therefore a capacitor is required to supply the AC current to the step－down converter while maintaining the DC input voltage．Use low ESR capacitors for the best performance．Ceramic capacitors are preferred，but tantalum or low－ESR electrolytic capacitors may also suffice．Choose X5R or X7R dielectrics when using ceramic capacitors．
Since the input capacitor（C1）absorbs the input switching current it requires an adequate ripple current
rating．The RMS current in the input capacitor can be estimated by：

$$
I_{\mathrm{C} 1}=\mathrm{I}_{\text {LOAD }} \times\left[\left(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right) \times\left(1-\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)\right]^{1 / 2}
$$

The worst－case condition occurs at $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{OUT}}$ ，where $\mathrm{I}_{\mathrm{C} 1}$ $=I_{\text {LOAD }} / 2$ ．For simplification，choose the input capacitor whose RMS current rating greater than half of the maximum load current．
The input capacitor can be electrolytic，tantalum or ceramic．When using electrolytic or tantalum capacitors， a small，high quality ceramic capacitor，i．e． $0.1 \mu \mathrm{~F}$ ，should be placed as close to the IC as possible．When using ceramic capacitors，make sure that they have enough capacitance to provide sufficient charge to prevent excessive voltage ripple at input．The input voltage ripple for low ESR capacitors can be estimated by：

$$
\Delta \mathrm{V}_{\text {IN }}=\left[\mathrm{I}_{\text {LOAD }} /\left(\mathrm{C} 1 \times \mathrm{f}_{\mathrm{S}}\right)\right] \times\left(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right) \times\left(1-\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)
$$

Where C1 is the input capacitance value．

Output Capacitor

The output capacitor is required to maintain the DC output voltage．Ceramic，tantalum，or low ESR electrolytic capacitors are recommended．Low ESR capacitors are preferred to keep the output voltage ripple low．The output voltage ripple can be estimated by：

$$
\begin{aligned}
\Delta \mathrm{V}_{\text {OUT }}= & {\left[\mathrm{V}_{\text {OUT }} /\left(\mathrm{f}_{\mathrm{S}} \times \mathrm{L}\right)\right] \times\left(1-\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right) } \\
& \times\left[\mathrm{R}_{\text {ESR }}+1 /\left(8 \times \mathrm{f}_{\mathrm{S}} \times \mathrm{C} 2\right)\right]
\end{aligned}
$$

Where C2 is the output capacitance value and $R_{\text {ESR }}$ is the equivalent series resistance（ESR）value of the output capacitor．
In the case of ceramic capacitors，the impedance at the switching frequency is dominated by the capacitance． The output voltage ripple is mainly caused by the capacitance．For simplification，the output voltage ripple can be estimated by：

$$
\Delta V_{\text {OUT }}=\left[V_{\text {OUT }} /\left(8 \times f_{S}^{2} \times L \times C 2\right)\right] \times\left(1-V_{\text {OUT }} / V_{\text {IN }}\right)
$$

In the case of tantalum or electrolytic capacitors，the ESR dominates the impedance at the switching frequency．For simplification，the output ripple can be approximated to：

$$
\Delta \mathrm{V}_{\text {OUT }}=\left[\mathrm{V}_{\text {OUT }} /\left(\mathrm{f}_{\mathrm{S}} \times \mathrm{L}\right)\right] \times\left(1-\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right) \times \mathrm{R}_{\text {ESR }}
$$

The characteristics of the output capacitor also affect the stability of the regulation system．The ZTP7192Y can be optimized for a wide range of capacitance and ESR values．

External Bootstrap Diode

An external bootstrap diode may enhance the efficiency of the regulator，the applicable conditions of external BOOT diode are：
－ $\mathrm{V}_{\text {out }}=5 \mathrm{~V}$ or 3.3 V ；and
－Duty cycle is high： $\mathrm{D}=\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}>65 \%$
In these cases，an external BOOT diode is recommended from the output of the voltage regulator to BOOT pin，as shown in Figure 2.

Figure 2：Add optional external bootstrap diode to enhance efficiency．

The recommended external BOOT diode is IN4148，and the BOOT capacitor is $0.1 \sim 1 \mu \mathrm{~F}$ ．

When $\mathrm{V}_{\text {IN }} \leq 6 \mathrm{~V}$ ，for the purpose of promote the efficiency，it can add an external Schottky diode between IN and BOOT pins，as shown in Figure 3.

Figure 3：Add a Schottky diode to promote efficiency when $\mathrm{V}_{\text {IN }} \leq 6 \mathrm{~V}$ ．

PCB Layout Guide

PCB layout is very important to achieve stable operation． Please follow the guidelines below．
1）Keep the path of switching current short and minimize the loop area formed by Input capacitor， high－side MOSFET and low－side MOSFET．
2）Bypass ceramic capacitors are suggested to be put close to the $\mathrm{V}_{\text {IN }}$ Pin．
3）Ensure all feedback connections are short and direct． Place the feedback resistors and compensation components as close to the chip as possible．
4）Rout SW away from sensitive analog areas such as FB．
5）Connect IN，SW，and especially GND respectively to a large copper area to cool the chip to improve thermal performance and long－term reliability．

BOM of ZTP7192Y

Please refer to the Typical Application Circuit．

Item	Reference	Part
1	C 1	$10 \mu \mathrm{~F}$
2	C 5	100 nF
3	C 7	$0.1 \mu \mathrm{~F}$
4	R4	100 K

Table 3：BOM selection table I．

	L1	R1	R2	C2
Vout $=5.0 \mathrm{~V}$	$6.8 \mu \mathrm{H}$	41.4 K	5.6 K	$10 \mu \mathrm{~F} \times 2$
Vout $=3.3 \mathrm{~V}$	$4.7 \mu \mathrm{H}$	20 K	4.4 K	$10 \mu \mathrm{~F} \times 2$
Vout $=2.5 \mathrm{~V}$	$3.3 \mu \mathrm{H}$	46.7 K	14.7 K	$10 \mu \mathrm{~F} \times 2$
Vout $=1.8 \mathrm{~V}$	$2.2 \mu \mathrm{H}$	70 K	35 K	$10 \mu \mathrm{~F} \times 2$
Vout $=1.2 \mathrm{~V}$	$2.2 \mu \mathrm{H}$	90 K	90 K	$10 \mu \mathrm{~F} \times 2$
Vout $=1.05 \mathrm{~V}$	$2.2 \mu \mathrm{H}$	95 K	126 K	$10 \mu \mathrm{~F} \times 2$

Table 4：BOM selection table II．

PACKAGE DIMENSION TSOT23-6L

Symbol	Dimensions in mm		Dimensions in Inch	
	Min	Max	Min	Max
A	0.700	0.900	0.028	0.035
A1	0.000	0.100	0.000	0.004
B	1.600	1.700	0.063	0.067
b	0.350	0.500	0.014	0.020
C	2.650	2.950	0.104	0.116
D	2.820	3.020	0.111	0.119
e	0.950 BSC		0.037 BSC	
H	0.080		0.200	0.003
L	0.300		0.600	0.012

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:

Click to view products by ZILLTEK manufacturer:

Other Similar products are found below :
ESM6D044440C05AAQ FMD15.24G PSL486-7LR PSR152.5-7IR Q48T30020-NBB0 AVO240-48S12B-6L AVO250-48S28B-6L NAN0505 HW-L16D JAHW100Y1 217-1617-001 22827 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 GQ2541-7R PSE1000DCDC-12V RDS180245 MAU228 419-2065-201 449-2075-101 J80-0041NL V300C24C150BG 419-2062-200 419-2063-401 419-2067-101 419-2067-501 419-2068-001 DCG40-5G DFC15U48D15 449-2067-000 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS$\underline{2415} \underline{X K S}-1215 \underline{033456}$ NCT1000N040R050B SPB05B-15 SPB05C-15 SSQE48T25025-NAA0G L-DA20 HP3040-9RG HP1001-9RTG XKS-2415 XKS-2412

