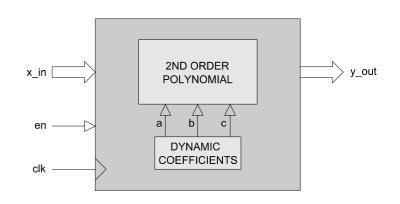


Rev. 1.2

Key Design Features

- Synthesizable, technology independent VHDL Core
- Function y = sin(x)
- Input range $0 \le x \le \pi/2$ (Quarter wave)
- Output range 0 ≤ y ≤ 1
- Based on a quadratic polynomial with dynamic coefficients
- Input values as 16-bit unsigned fractions
- Output values as 16-bit unsigned fractions in radians
- Accurate to within 0.0002
- High-speed fully pipelined architecture
- 3 clock-cycle latency

Applications


- Fixed-point mathematics
- Quadrature signal generation in digital communications
- Alternative to using a 65536 x 16-bit LUT (128kbytes)


Pin-out Description

Pin name	<i>I/O</i>	Description	Active state
clk	in	Synchronous clock	rising edge
en	in	Clock enable	high
x_in [15:0]	in	Input value in radians	data
y_out [15:0]	out	Output value	data

Functional Specification

Value	Туре	Valid range
x_in [15:0]	16-bit unsigned fraction in [16 15] format	[0, π/2]
y_out [15:0]	16-bit unsigned fraction in [16 15] format	[0, 1]
		Accuracy to within 0.0002

General Description

Block Diagram

SIN_X (Figure 1) calculates the sine of an angle. It has a fully pipelined architecture and uses fixed-point mathematics throughout. Input values are accepted as 16-bit unsigned values in the range 0 to $\pi/2$. Output values are 16-bit unsigned values in the range 0 to 1. For input values greater than $\pi/2$, the output saturates to 1.0. Both input and output values are in [16 15] format with 1 integer bit and 15 fraction bits. As an example the input value 0xC000 would signify the value 1.5.

Internally, the function uses a 2nd order polynomial of the form:

$$y = ax^2 + bx + c$$

The coefficients a, b and c dynamically change with respect to the input value in order to generate a more accurate approximation. The output result is accurate to within 0.0002.

Values are sampled on the rising clock-edge of clk when en is high. The function has a 3 clock-cycle latency.

Functional Timing

Figure 2 demonstrates the computation of y = sin(x), where x = 0x37E4 (0.4366 as a decimal fraction). The result, 0x3621 (0.4229 in decimal) has a latency of 3 clock cycles.

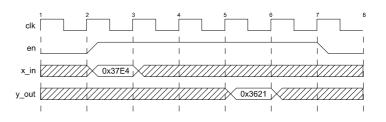


Figure 2: Calculation of y = sin(x)

Source File Description

All source files are provided as text files coded in VHDL. The following table gives a brief description of each file.

Source file	Description
sin_x.vhd	Top-level block
sin_x_bench.vhd	Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL simulator. The compilation order of the source code is as follows:

- 1. sin_x.vhd
- 2. sin_x_bench.vhd

The simulation must be run for at least 1 ms during which time a 16-bit input stimulus in the range 0 to 65535 will be generated. The test terminates automatically.

The simulation generates a text file called $sin_x_out.txt$. This file contains the output results captured during the test. The results of the test are shown graphically in Figure 3 below:

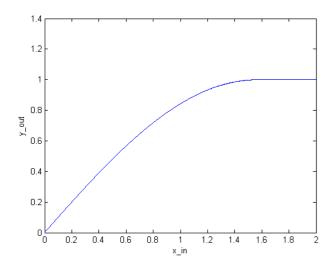


Figure 3: Plot of test results for sin_x function

Synthesis

The source file 'sin_x.vhd' is the only file required for synthesis. There are no sub-modules in the design.

The VHDL core is designed to be technology independent. However, as a benchmark, synthesis results have been provided for the Xilinx® Virtex 6 and Spartan 6 FPGA devices. Synthesis results for other FPGAs and technologies can be provided on request.

Resource usage is specified after Place and Route.

VIRTEX 6

Resource type	Quantity used
Slice register	40
Slice LUT	54
Block RAM	0
DSP48	3
Occupied slices	20
Clock frequency (approx)	300 MHz

SPARTAN 6

Resource type	Quantity used	
Slice register	40	
Slice LUT	52	
Block RAM	0	
DSP48	3	
Occupied slices	25	
Clock frequency (approx)	200 MHz	

Revision History

Revision	Change description	Date
1.0	Initial revision	28/04/2008
1.1	Improved accuracy and updated synthesis results	07/04/2009
1.2	Updated synthesis results for Xilinx® 6 series FPGAs	06/06/2012

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Software category:

Click to view products by Zipcores manufacturer:

Other Similar products are found below :

 SRP004001-01
 SW163052
 SYSWINEV21
 WS01NCTF1E
 W128E13
 SW89CN0-ZCC
 IP-UART-16550
 MPROG-PRO535E
 AFLCF-08

 LX-CE060-R21
 WS02-CFSC1-EV3-UP
 SYSMAC-STUDIO-EIPCPLR
 1120270005
 SW006021-2H
 ATATMELSTUDIO
 2400573
 2702579

 2988609
 SW006022-DGL
 2400303
 88970111
 DG-ACC-NET-CD
 55195101-102
 SW1A-W1C
 MDK-ARM
 SW006021-2NH

 B10443
 SW006021-1H
 SW006021-2
 SW006022-2
 SW006023-2
 SW007023
 MIKROE-730
 MIKROE-2401
 MIKROE-499
 MIKROE-722

 MIKROE-724
 MIKROE-726
 MIKROE-728
 MIKROE-732
 MIKROE-734
 MIKROE-736
 MIKROE-744
 MIKROE-928

 MIKROE-936
 1120270002
 1120270003
 1120275015
 NT-ZJCAT1-EV4