

Key Design Features

- Synthesizable, technology independent IP Core for FPGA, ASIC and SoC
- Supplied as human readable VHDL (or Verilog) source code
- SPI[™] serial-bus compliant (*including Motorola and TI modes*)
- Simple programming makes use of a single control register and a single address register
- Architecture allows sustained 8-bit read/write operations
- User-defined number of 8-bit read-write configuration registers and 8-bit read-only status registers (up to 256 of each type)
- User-defined preset default values for all configuration registers
- Configurable clock polarity setting (CPOL)
- Configurable clock phase setting (CPHA)
- SPI bus signals are treated asynchronously in relation to the system clock
- Support of system clock to SPI clock ratios of 6:1 (or higher)
- Typical data rates of 50 Mbps+ on basic FPGA devices¹

Applications

- SPI slave communications
- Inter-chip board-level communications
- Robust communication at higher data rates than other serial protocols such as I2C, UART and USB 1.X

Generic Parameters

Generic name	Description	Туре	Valid range
num_config	Number of Configuration registers	integer	2 ≤ regs ≤ 256 (power of 2)
num_config_log2	Log2 number of Configuration registers	integer	Log2 (num_config)
num_status	Number of Status registers	integer	2 ≤ regs ≤ 256 (power of 2)
num_status_log2	Log2 number of Status registers	integer	Log2 (num_status)
cpol	Clock polarity	integer	0, 1
cpha	Clock phase	integer	0, 1

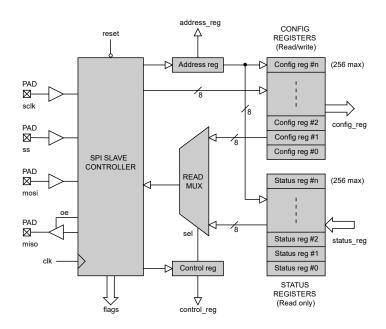


Figure 1: SPI Slave Interface Controller architecture

Pin-out Description

Block Diagram

Pin name	I/O	Description	Active state
clk	in	Synchronous clock	rising edge
reset	in	Asynchronous reset	low
sclk	in	SPI [™] Serial clock	rising or falling edge ²
SS	in	SPI [™] Serial select	low
mosi	in	SPI™ Master out / Slave in	data
miso	tristate out	SPI™ Master in / Slave out	data
co_flag	out	Control register write	pulse high
ad_flag	out	Address register write	pulse high
wr_flag	out	Config register write	pulse high
rd_flag	out	Config register read	pulse high
ro_flag	out	Status register read	pulse high
control_reg [7:0]	out	Internal control register	data
address_reg [7:0]	out	Internal address register	data
config_reg [num_config*8-1:0]	out	Configuration register output bits	data
status_reg [num_status*8-1:0]	in	External status register input bits	data

1 Maximum attainable data rate will be determined by the choice of device and the and the physical characteristics of the bus

2 Note that the serial clock characteristics are dependent on the CPOL and CPHA settings. See the SPI[™] specification for more details

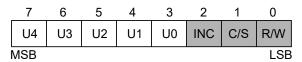
Rev. 1.3

SPI Slave Serial Interface Controller

General Description

The SPI_SLAVE IP Core is an SPI[™] compliant slave interface controller. The controller decodes the bus signals and de-serializes them into a series of 8-bit bytes. Communication with the slave controller is achieved by programming a single control register and a single address register. The control register defines whether the transfer is a read or write and also the type of register to be accessed (config or status). The address register provides an index into the chosen register bank.

Both the config registers and the status registers are directly connected to the external ports of the controller. The config registers provide general purpose read/write bits for the control of an external device. The status registers are read only and allow the state of external pins to be monitored via the SPI interface.

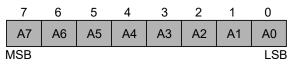

All inputs to the slave interface controller are driven by the bus Master with the exception of miso which is a tristate output. The signal miso is normally in the high-impedance state unless a read operation is in active progress. The SPI slave controller is comprised of three main blocks as described by Figure 1. These blocks are the SPI Slave Controller core, the Configuration register bank and the Status register bank.

SPI Slave Controller Core

The slave controller core is a state-machine that continually monitors the state of the SPI signals. An SPI transfer begins with the high-to-low transition of the slave select signal ss. Once ss is driven low, the controller will sample the next 16-bits from the master at the mosi input. Bits are sampled on either the rising or falling edge of sclk depending on the clock configuration settings cpol and cpha.

The first 8-bits in the transfer are written to the internal control register and the next 8-bits are written to the internal address register. Figure 2 shows the programming of the control and address registers in more detail

CONTROL REGISTER



0 - Read/Write flag Bit

Bit

- 0 = Write, 1 = Read 1 - Config/Status register select 0 = Config, 1 = Status 0 = Auto, 1 = No auto
- 2 Address auto-increment Bit Bit 7:3 - User defined control flags

ADDRESS REGISTER

Bit 7:0 - Address of register to access

Figure 2: Control and Address register definitions

Every SPI transfer must begin with a write to the control register and the address register. The R/W flag in the control register determines whether the operation is a read or a write. The C/S flag determines whether a

ər	performed	(to the	he s	ame	register	bank).	The	SPI	bus	transfer	will
ie	terminate in	nmed	liately	as s	oon as s	s is drive	n high	n. If t	the u	ser wishe	s to

terminated before the next bank is accessed.

setting the INC flag in the control register to '1'.

0.

The controller state machine generates a series of output flags whenever an 8-bit read or write to one of the internal registers is performed. These flags take the form of a single pulse that lasts for one system clock cycle. The strobes may be used as interrupt or valid flags to indicate that the contents of one of the registers has changed.

configuration register or a status register is to be accessed. The INC flag

(when set) turns off the address pointer auto-increment function. Bits U4 to U0 are user defined flags that may be programmed as required. The address register contains the address of the first register to be accessed

in the chosen register bank. Once the control and address registers have

been written, the next 8 serial clocks are used to synchronize a write to a

Normally after each 8-bit read or write, the internal address register is

incremented by 1 and the master may write or read a further 8-bits. This

means that successive back-to-back reads or writes will be performed on the next register in the chosen register bank. Once the maximum

address has been reached, the address pointer will wrap around back to

Any number of sequential register read or write operations may be

read and write different register banks, the current SPI transfer must be

Note that the address auto-increment function may be disabled by

configuration register or a read from a configuration/status register.

Clock Polarity and Phase settings

The generic settings cpol and cpha determine how the serial data is sampled and changed with respect to the serial clock. These settings are defined in the standard SPI[™] specification. The table below shows a brief summary of these settings.

CPOL	СРНА	Description
0	0	Serial clock default state logic '0' Data sampled on rising-edge of serial clock Data changed on falling-edge of serial clock
0	1	Serial clock default state logic '0' Data sampled on falling-edge of serial clock Data changed on rising-edge of serial clock
1	0	Serial clock default state logic '1' Data sampled on falling-edge of serial clock Data changed on rising-edge of serial clock
1	1	Serial clock default state logic '1' Data sampled on rising-edge of serial clock Data changed on falling-edge of serial clock

Configuration Register bank

The configuration registers are organized as a bank of 8-bit general purpose read/write registers that may be accessed via the SPI slave interface. The config registers are designed to be used for the general configuration of devices external to the controller.

The contents of these registers are made available at the output port config_reg. This port contains the contents of all the config register bits concatenated together. This means that bits 7..0 represent the contents of config reg #0, bits 15..8 the contents of config reg #1 etc.

The total number of config registers is defined by the generic parameter num_config. The total number of configuration registers must be a power of 2 for the register addressing to work correctly. All config regsiters may be given a user-defined default value which is present after system reset.

Status Register bank

The status registers follow exactly the same structure as the configuration registers. The difference is that these registers are read only. Any attempt to write these registers will have no effect other than to perform a dummy transfer on the SPI bus. The status registers are designed to be used for snooping the state of control signals in an external device.

The port *status_reg* contains the contents of all the status register bits concatenated together. This means that bits 7..0 represent the contents of status reg #0, bits 15..8 the contents of status reg #1 etc.

The total number of status registers is defined by the generic parameter *num_status*. The total number of status registers must be a power of 2 for the register addressing to work correctly.

Functional Timing

The following timing diagrams demonstrate the SPI protocol for reading and writing registers in the various register banks. All the examples show SPI mode 0,0 operation – meaning that data is sampled on the rising edge of the serial clock and data changes on the falling edge. The default state of the clock is logic '0'.

Figure 3 shows a write to two consecutive config registers at addresses 0x02 and 0x03. In this particular example the user-defined control flags have also been set in the control register. Auto-increment is set to '0' so that successive writes increment the value in the address pointer.

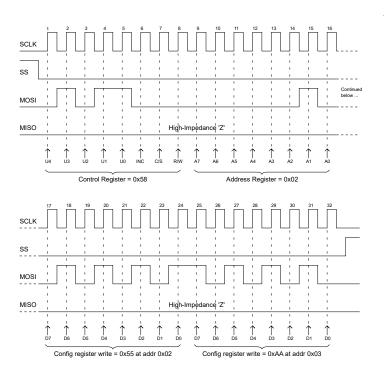


Figure 3: Config register write example

Figure 4 shows the corresponding config register read operation after the previous write example.

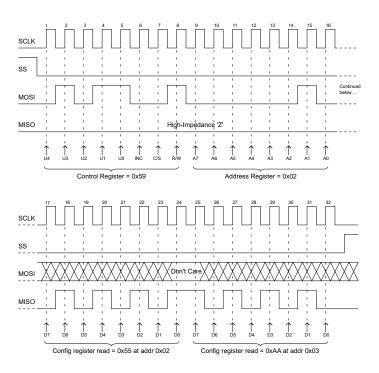


Figure 4: Config register read example

Figure 5 demonstrates a sequential read from registers 0x01 and 0x02 in the status register bank.

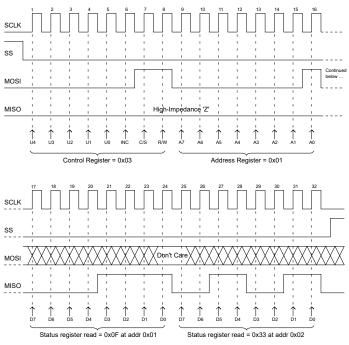


Figure 5: Status register read example

Source File Description

All source files are provided as text files coded in VHDL. The following table gives a brief description of each file.

Source file	Description
spi_slave_stim.txt	Input stimulus text file
spi_slave_pack.vhd	Package for defining default values
spi_obuf.vhd	Tristate output buffer
spi_config_reg.vhd	Configuration register bank
spi_status_reg.vhd	Status register bank
spi_slave_cont.vhd	Main SPI slave controller
spi_slave_file_reader.vhd	Reads the SPI bus signals from a text file
spi_slave.vhd	Top-level block
spi_slave_bench.vhd	Top-level test bench

Functional Testing

An example VHDL test bench is provided for use in a suitable VHDL simulator. The compilation order of the source code is as follows:

- 1. spi_slave_pack.vhd
- 2. spi_obuf.vhd
- 3. spi_config_reg.vhd
- 4. spi_status_reg.vhd
- 5. spi_slave_cont.vhd
- 6. spi_slave.vhd
- 7. spi_slave_file_reader.vhd
- 8. spi_slave_bench.vhd

The VHDL test bench instantiates the SPI_SLAVE component together with a file-reader module that reads the SPI bus signals from a text file. The SPI serial clock characteristics may be modified by changing the generic parameters *cpol* and *cpha*. In addition, the number of configuration and status registers may be changed with the parameters *num_config* and *num_status*. The testbench provided sets up the slave controller with 4 config regs and 4 status regs. By default, the SPI mode is set to 0,0 (i.e. cpol = 0, cpha = 0).

The input stimulus text file is called *spi_slave_stim.txt* and should be put in the current top-level VHDL simulation directory. This text file contains SPI commands that emulates the action of the SPI master on the bus. As an example, in order to send the byte 0x55 to the slave controller (in SPI mode 0,0) the text file would read:

000	# SS = 0, SCLK = 0, MOSI = 0
010	# SS = 0, SCLK = 1, MOSI = 0
001	# SS = 0, SCLK = 0, MOSI = 1
011	# SS = 0, SCLK = 1, MOSI = 1
000	# SS = 0, SCLK = 0, MOSI = 0
010	# SS = 0, SCLK = 1, MOSI = 0
001	# SS = 0, SCLK = 0, MOSI = 1
011	# SS = 0, SCLK = 1, MOSI = 1
000	# SS = 0, SCLK = 0, MOSI = 0
010	# SS = 0, SCLK = 1, MOSI = 0
001	# SS = 0, SCLK = 0, MOSI = 1
011	# SS = 0, SCLK = 1, MOSI = 1
000	# SS = 0, SCLK = 0, MOSI = 0
010	# SS = 0, SCLK = 1, MOSI = 0
001	# SS = 0, SCLK = 0, MOSI = 1
011	# SS = 0, SCLK = 1, MOSI = 1

In the text file, the SPI bus signalling is split into 2 phases on 2 consecutive lines. Each line is comprised of three bits in the format 'A B C' where 'A' specifies the state of the SS line, 'B' is the state of the SCLK line and 'C' is the state of the MOSI line. The values 'A', 'B' and 'C' can either be specified as '0' or '1'.

In the default set up, the simulation must be run for around 1 ms during which time the file-reader module will drive the SPI bus with the input stimulus. In this particular example, the test bench performs a sequential write and read of the 4 config and status registers.

The simulation generates the text file *spi_slave_out.txt* which contains a snapshot of the 8-bit read/write data captured at the SPI interface during the course of the test. The contents of this file may be examined to verify the operation of the SPI slave controller.

Development Board Testing

The SPI Slave Serial Interface Controller was implemented on the Digilent® Arty-A7 development board featuring an Xilinx® Artix-7 35T FPGA. The system clock frequency was set to 100 MHz.

In order to test the SPI Slave, a corresponding SPI Master device was implemented using the PICkit Serial Analyzer from Microchip®. The PICkit Analyzer was connected to a host PC with a user interface program. In this way, various SPI read and write commands could be sent to the SPI Slave to confirm correct operation. Figure 6 below shows the general bench setup for testing.

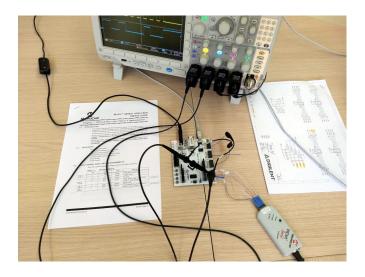
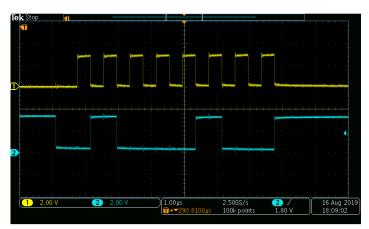
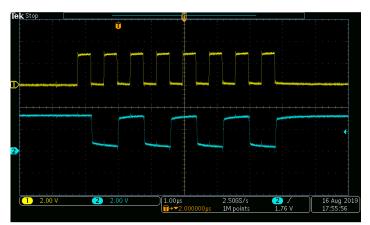



Figure 6: Bench setup for testing the SPI Slave IP Core

Various tests were performed to ensure correct operation of the SPI Slave IP Core in various different configurations. These included different numbers of configuration and status registers, different clock polarities and different clock frequencies. In all cases the SPI Slave was found to working correctly.


The figures below show some examples of oscilloscope waveform traces captured for various SPI write and read operations. Figure 7 shows a general SPI write operation captured on the scope. The value written is 0x44.

SPI Slave write operation (SCK, MOSI)

Figure 7: SPI write operation (0x44)

Figure 8 shows a general SPI read operation. In this case, the SPI read was from an internal status register. The value read back was 0xAA.

SPI Slave read operation (SCK, MISO)

Figure 8: SPI read operation (0xAA)

Synthesis and Implementation

The files required for synthesis and the design hierarchy is shown below:

- spi_slave.vhd
 - o spi slave pack.vhd
 - O spi_slave_cont.vhd
 - O spi_config_reg.vhd
 - O spi_status_reg.vhd
 - O spi_obuf.vhd

The VHDL core is designed to be technology independent. However, as a benchmark, synthesis results have been provided for the Xilinx® 7-series FPGAs. Synthesis results for other FPGAs and technologies can be provided on request.

Note that the number of config and status registers used in the implementation will have the greatest influence on the size and attainable clock speed of the controller core.

Trial synthesis results are shown with the generic parameters set to: num_config = 4, num_config_log2 = 2, num_status = 4, num_status_log2, cpol = 0, cpha = 0.

Resource usage is specified after Place and Route.

XILINX® 7-SERIES FPGAS

Resource type	Artix-7	Kintex-7	Virtex-7
Slice Register	102	102	102
Slice LUTs	117	109	105
Block RAM	0	0	0
DSP48	0	0	0
Occupied Slices	51	39	39
Clock freq. (approx)	350 MHz	450 MHz	500 MHz+

Revision History

Revision	Change description	Date
1.0	Initial revision.	01/04/2009
1.1	Updated synthesis results for Xilinx® 6 series FPGAs.	31/05/2012
1.2	Added more detail in the key design features. Updated synthesis results for Xilinx® 7 FPGAs. Minor code changes.	19/08/2019
1.3	Added feature to allow config registers to be programmed with a user-defined default value after system reset.	12/08/2021

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Software category:

Click to view products by Zipcores manufacturer:

Other Similar products are found below :

 SRP004001-01
 SW163052
 SYSWINEV21
 WS01NCTF1E
 W128E13
 SW89CN0-ZCC
 IP-UART-16550
 MPROG-PRO535E
 AFLCF-08

 LX-CE060-R21
 WS02-CFSC1-EV3-UP
 SYSMAC-STUDIO-EIPCPLR
 1120270005
 SW006021-2H
 ATATMELSTUDIO
 2400573
 2702579

 2988609
 SW006022-DGL
 2400303
 88970111
 DG-ACC-NET-CD
 55195101-102
 SW1A-W1C
 MDK-ARM
 SW006021-2NH

 B10443
 SW006021-1H
 SW006021-2
 SW006022-2
 SW006023-2
 SW007023
 MIKROE-730
 MIKROE-2401
 MIKROE-499
 MIKROE-722

 MIKROE-724
 MIKROE-726
 MIKROE-728
 MIKROE-732
 MIKROE-734
 MIKROE-736
 MIKROE-744
 MIKROE-928

 MIKROE-936
 1120270002
 1120270003
 1120275015
 NT-ZJCAT1-EV4