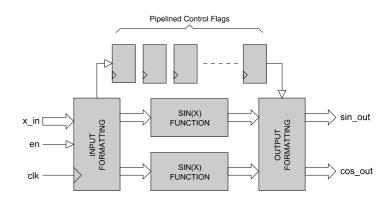
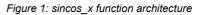


Key Design Features

- Synthesizable, technology independent VHDL Core
- Combined functions y = sin(x), y = cos(x)
- Input range $-\pi \le x \le \pi$
- Output range -1 ≤ y ≤ 1
- Based on a quadratic polynomial with dynamic coefficients
- Input values as 18-bit signed fractions in radians
- Output values as 17-bit signed fractions
- Accurate to within 0.00017
- High-speed fully pipelined architecture
- Tiny implementation
- Only 5 clock-cycles latency

Applications


- Fixed-point mathematics
- Quadrature signal generation in digital communications
- Cheaper alternative to using a 65k x 16-bit LUT (128kbytes)
- Cheaper alternative to CORDIC


Pin-out Description

Pin name	<i>I/O</i>	Description	Active state
clk	in	Synchronous clock	rising edge
en	in	Clock enable	high
x_in [17:0]	in	Input value in radians	data
sin_out [16:0]	out	Output value	data
cos_out [16:0]	out	Output value	data

Functional Specification

Value	Туре	Valid range
x_in [17:0]	18-bit signed fraction in [18 15] format	[-π, π]
sin_out [16:0]	17-bit signed fraction in [17 15] format	[-1, 1] Accuracy to within 0.0002
cos_out [16:0]	17-bit signed fraction in [17 15] format	[0, 1] Accuracy to within 0.0002

General Description

Block Diagram

SINCOS_X (Figure 1) calculates the sine and cosine of an angle in radians. It has a fully pipelined architecture and uses fixed-point mathematics throughout. Input values are accepted as 18-bit signed values in the range $-\pi$ to π . Output values are 17-bit signed values in the range -1 to 1. For input values outside the specified range, *sin_out* defaults to 0 and *cos_out* defaults to -1.

Input and output values are specified in [18 15] format with 1 sign bit, 2 integer bits and 15 fraction bits. Output values are in [17 15] format with 1 sign bit, 1 integer bit and 15 fraction bits. Internally, the function uses a quarter-wave SIN function core implemented as a 2^{nd} order polynomial with dynamic coefficients. Values are sampled on the rising clock-edge of *clk* when *en* is high. The function has a 5 clock-cycle latency.

Functional Timing

Figure 2 demonstrates the computation of y = sin(x) and y = cos(x) where x is respectively 0x04872 and 0x30066 (0.56598 and -1.99689 as a decimal fraction). The results for the SIN calculation are 0x044A4 and 0x18B72 (0.53625 and -0.91058 in decimal). For the COS calculation the results are 0x06C09 and 0x1CB1B (0.84402 and -0.41324 in decimal).

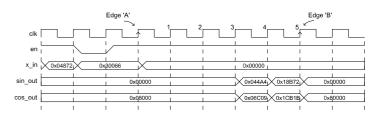


Figure 2: Timing waveform for the sincos function

Note that the second value of x is stalled by the clock-enable signal being de-asserted for one clock cycle. In the next cycle, the clock-enable is asserted high and normal operation continues. The function has a latency of 5 clock cycles as indicated by edge 'A' and 'B' in the timing waveform.

Rev. 1.1

Source File Description

All source files are provided as text files coded in VHDL. The following table gives a brief description of each file.

Source file	Description
sin_x.vhd	Quarter-wave SIN function
sincos_x.vhd	Top-level block
sincos_x_bench.vhd	Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL simulator. The compilation order of the source code is as follows:

- 1. sin_x.vhd
- 2. sincos_x.vhd
- 3. sincos_x_bench.vhd

The simulation must be run for at least 3 ms during which time an 18-bit input stimulus in the range 0 to 262143 will be generated. The test terminates automatically.

The simulation generates two text files called $sincos_x_in.txt$ and $sincos_x_out.txt$. These files contain the input and output samples captured during the course of the test. The results of the test are shown graphically in Figure 3 below:

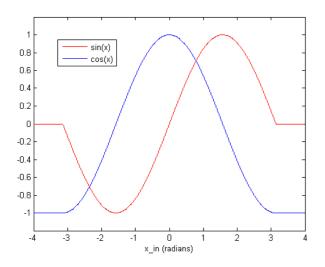


Figure 3: Plot of test results for sincos_x function

Note the valid input range from $-\pi$ to π . Values outside this range default to 0 for sin(x) and -1 for cos(x).

Synthesis

The source files required for synthesis and the design hierarchy is shown below:

- sincos_x.vhd sin_x.vhd
 - sin_x.vhd

The VHDL core is designed to be technology independent. However, as a benchmark, synthesis results have been provided for the Xilinx® Virtex 6 and Spartan 6 FPGA devices. Synthesis results for other FPGAs and technologies can be provided on request.

Resource usage is specified after Place and Route.

VIRTEX 6		
Resource type	Quantity used	
Slice register	153	
Slice LUT	328	
Block RAM	0	
DSP48	6	
Occupied slices	101	
Clock frequency (approx)	200 MHz	

SPARTAN 6

Resource type	Quantity used
Slice register	138
Slice LUT	332
Block RAM	0
DSP48	6
Occupied slices	112
Clock frequency (approx)	150 MHz

Revision History

Revision	Change description	Date
1.0	Initial revision	04/05/2009
1.1	Updated synthesis results for Xilinx® 6 series FPGAs	07/06/2012

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Development Software category:

Click to view products by Zipcores manufacturer:

Other Similar products are found below :

 SRP004001-01
 SW163052
 SYSWINEV21
 WS01NCTF1E
 W128E13
 SW89CN0-ZCC
 IP-UART-16550
 MPROG-PRO535E
 AFLCF-08

 LX-CE060-R21
 WS02-CFSC1-EV3-UP
 SYSMAC-STUDIO-EIPCPLR
 1120270005
 SW006021-2H
 ATATMELSTUDIO
 2400573
 2702579

 2988609
 SW006022-DGL
 2400303
 88970111
 DG-ACC-NET-CD
 55195101-102
 SW1A-W1C
 MDK-ARM
 SW006021-2NH

 B10443
 SW006021-1H
 SW006021-2
 SW006022-2
 SW006023-2
 SW007023
 MIKROE-730
 MIKROE-2401
 MIKROE-499
 MIKROE-722

 MIKROE-724
 MIKROE-726
 MIKROE-728
 MIKROE-732
 MIKROE-734
 MIKROE-736
 MIKROE-744
 MIKROE-928

 MIKROE-936
 1120270002
 1120270003
 1120275015
 NT-ZJCAT1-EV4
 MIKROE-738
 MIKROE-744
 MIKROE-928