

ZT3483E/ZT3485E/ZT3488E/ZT3490E/ZT3491E Low Power 3V 250Kbps/16Mbps RS485 Transceivers Datasheet

Revision 2.00 Apr. 8th, 2015

Released Date: 04/08/2015

http://www.asix.com.tw/

IMPORTANT NOTICE

Copyright © 2012-2015 ASIX Electronics Corporation. All rights reserved.

DISCLAIMER

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of ASIX. ASIX may make changes to the product specifications and descriptions in this document at any time, without notice.

ASIX provides this document "as is" without warranty of any kind, either expressed or implied, including without limitation warranties of merchantability, fitness for a particular purpose, and non-infringement.

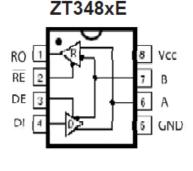
Designers must not rely on the absence or characteristics of any features or registers marked "reserved", "undefined" or "NC". ASIX reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Always contact ASIX to get the latest document before starting a design of ASIX products.

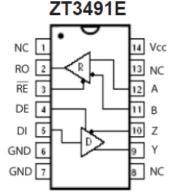
TRADEMARKS

ASIX, the ASIX logo are registered trademarks of ASIX Electronics Corporation. All other trademarks are the property of their respective owners.

Features

- Meets or exceeds the requirements of ANSI Standard TIA/EIA-485-A and ISO 8482:1987(E) specifications for Vcc at +3.3V ±10%
- Low quiescent current 0.5mA typ., 1.5mA max.
- Low shutdown current (where applicable) 0.05μA typical, 10μA max.
- Guaranteed standard data rate 250Kbps or 16Mbps
- True Fail-Safe (Open and Short) Receiver
- -7V to +12V common-mode input voltage range
- Half-Duplex or Full-Duplex configuration
- Allows up to 1 unit load (32 devices) on the same common bus
- Controlled driver output slew rate and receiver input filtering
- Active-high driver enable and active-low receiver enable
- ESD Protection on bus terminals ±15KV Human Body Model (HBM)
- Drop-in Replacements for MAX3483E, MAX3485E, MAX3488E, MAX3490E, MAX3491E
- High fanout driving 1/8 unit load (256 devices) available on ZT3070E Series


General Description


The ZT3485E series devices are 3V differential data line transceivers for RS485/RS422 communication that consist of one driver and one receiver with high level of ESD protection. They are designed for balanced transmission lines interface that meet ANSI standard TIA/EIA-485-A and ISO 8482:1987(E) specifications.

The ZT3485E series devices span out with half or full duplex, data rate guaranteed at 250Kbps or 16Mbps, and allow one unit load that fan out 32 devices sharing a common bus. The I/Os are enhanced-electrostatic discharge (ESD) protected, exceeding ±15KV Human Body Model (HBM).

Applications

- RS-422/RS-485 communications
- Utility meters
- Industrial process control
- Building automation
- Level translators
- Transceivers for EMI-sensitive applications
- Routers and HUBs
- Industrial-controlled Local Area Networks
- Industrial PCs, embedded PCs and peripherals

Product Selection Guide and Cross Reference

Part Number	Duplex	# Of Tx/Rx	Data Rate (Mbps)	# of Tx/ Rx on Bus	Slew Rate Limit	Rx Input Filtering	Low- Power Shutdown	Tx/Rx Enable	ESD on Tx/Rx	Number of Pins	Pin-to-Pin Cross Reference
ZT3483E	Half	1/1	0.25	32	Yes	Yes	Yes	Yes	± 15KV	8	MAX3483E
ZT3485E	Half	1/1	16	32	No	No	Yes	Yes	± 15KV	8	MAX3485E
ZT3488E	Full	1/1	0.25	32	Yes	Yes	No	No	± 15KV	8	MAX3488E
ZT3490E	Full	1/1	16	32	No	No	No	No	± 15KV	8	MAX3490E
ZT3491E	Full	1/1	16	32	No	No	Yes	Yes	± 15KV	14	MAX3491E

Absolute Maximum Ratings

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Power Supply, (V_{CC}) 0.3V to +7.0V
--

Input Voltages

DI, DE, <u>RE</u>	–0.3V to (V _{CC} +0.3V)
Differential Input Voltage, (VID)	-12V to +12V
A, B (V _I)	9V to +13V

Output Voltages

RO	–0.3V to +6.0V
Y, Z (A & B on Half Duplex)	9V to +13.0V
Operating Temperature	–40°C to +85°C
Storage Temperature	–65°C to +150°C

Power Dissipation Per Package

8-pin PDIP (derate 9.09mW/°C above +70°C)	722mW
8-pin nSOIC (derate 6.14mW/°C above +70°C)	500mW
14-pin PDIP (derate 10.00mW/°C above +70°C)	800mW
14-pin nSOIC (derate 8.33mW/°C above +70°C)	667mW

Storage Considerations

Storage in a low humidity environment is preferred. Large high density plastic packages are moisture sensitive and should be stored in Dry Vapor Barrier Bags. Prior to usage, the parts should remain bagged and stored below 40°C and 60%RH. If the parts are removed from the bag, they should be used within 168 hours or stored in an environment at or below 20%RH. If the above conditions cannot be followed, the parts should be baked for 12 hours at 125°C in order to remove moisture prior to soldering. ASIX ships product in Dry Vapor Barrier Bags with a humidity indicator card and desiccant pack. The humidity indicator should be below 30%RH. The MSL of this product is 3.

The information furnished by ASIX has been carefully reviewed for accuracy and reliability. Its application or use, however, is solely the responsibility of the user. No responsibility of the use of this information become part of the terms and conditions of any subsequent sales agreement with ASIX. Specifications are subject to change without the responsibility for any infringement of patents or other rights of third parties which may result from its use. No license or proprietary rights are granted by implication or otherwise under any patent or patent rights of ASIX Electronics Corporation.

1 DC Electrical Characteristics

Unless otherwise stated, Vcc = +3.3V, TA = Tmin to Tmax, typical values apply at Vcc = +3.3V and TA = 25°C.

Parameter	Condition	Min	Тур	Max	Units
Operating Voltage & Temperature	-			-	
Temperature	Industrial Grade	-40	25	85	°C
Vcc Voltage Range		3.0	3.3	3.6	V
Supply Current			<u>.</u>		<u> </u>
Icc, Tx and Rx active	DI= Vcc /GND, DE= Vcc, RE=GND, RS485 I/O=Open		400	650	μA
Icc, Tx active	DI= Vcc /GND, DE= Vcc, RE= Vcc, RS485 I/O=Open		400	650	μA
Icc, Rx active	DI= Vcc /GND, DE=GND, RE=GND, RS485 I/O=Open		400	650	μA
I _{SD} , Shutdown Current	DI= Vcc /GND, DE = GND, RE = Vcc, RS485 I/O=Open		0.05	10	μA
TTL LOGIC Input, Driver				-	
Input Threshold Low, VIL	Vcc = +5.0V, DE, DI, and $\overline{\text{RE}}$		1.4	0.8	V
Input Threshold High, V _{IH}	Vcc = +5.0V, DE, DI, and $\overline{\text{RE}}$	2	1.4		V
TTL LOGIC Output, Receiver			<u>.</u>		
Output Voltage Low, V _{OL}	I _{OUT} = +4mA, Input Differential Voltage = 200mV			0.4	V
Output Voltage High, V _{OH}	I _{OUT} = -4mA, Input Differential Voltage = 200mV	Vcc -0.3			V
Output Leakage Current	Receiver Outputs Disabled, V _{OUT} = 0.4V to 2.4V		±0.05	±1	μA
Short Circuit Current	$V_{OUT} = 0V$ to Vcc	±7		±95	mA
Receiver Input					
Input Current	$DE = 0V$, $Vcc = 0V$ to 3.6V, $V_{IN} = +12V$			1.0	mA
	$DE = 0V$, $Vcc = 0V$ to 3.6V, $V_{IN} = -7V$			-0.8	mA
Differential Threshold Voltage, V_{TH}	V _{CM} = 0V, Vcc =+5.0V, T _A =25°C	-0.2		0.2	V
Input Hysteresis	$V_{CM} = 0V$		20		mV
Input Resistance, R _{IN}	V _{CM} = -7V to +12V	12			KΩ
Transmitter Output					
Differential Output Voltage, V _{OD1}	No Load			Vcc	V
Differential Output Voltage, V _{OD2}	With $R_L = 50\Omega$, Refer to Figure 1. (RS422)	2		Vcc	V
	With $R_L = 27\Omega$, Refer to Figure 1. (RS485)	1.5		Vcc	V
Driver Common Mode Output, V_{OC}	With $R_L = 27\Omega$ or 50Ω . $C_L = 50pF$. Refer to Figure 3.			3	V
Change in Voltage Magnitude for Differential States, ΔVOD	Differential Output Voltage, with $RL = 27\Omega$ or 50Ω , Refer to Figure 1			0.2	V
Change in Voltage Magnitude for Common Mode States, ΔVOC	Common-Mode Output Voltage, with $RL = 27\Omega$ or 50Ω . Refer to Figure 2.			0.2	V
Transmitter Short-Circuit Current	Output HIGH, VOUT = -7V to +12V. Refer to Figure 7.			250	mA
	Output LOW, Vou⊤ = -7V to +12V. Refer to Figure 7.			250	mA
Output Leakage Current, Full Duplex	V_{IN} = +12V, DE=GND, V_{cc} =0V or 3.6V			125	μA
	$V_{IN} = -7V$, DE=GND, $V_{cc} = 0V$ or 3.6V	-100			μA

2 AC Electrical Characteristics (ZT3485E, ZT3490E, ZT3491E)

Unless otherwise stated, Vcc = +3.3V, TA = Tmin to Tmax, typical values apply at Vcc = +3.3V and $TA = 25^{\circ}C$.

Condition	Min	Тур	Max	Units
		<u> </u>		
$R_{DIFF} = 54\Omega$, $C_L = 50$ pF. Refer to Figure 4.		35	75	ns
$R_{DIFF} = 54\Omega$, $C_L = 50pF$. Refer to Figure 4.		35	75	ns
t _{PLH} - t _{PHL}		3	15	ns
tr, tf, $R_{DIFF} = 54\Omega$, $C_L = 50$ pF. Refer to Figure 4.		15	25	ns
To Output HIGH, $C_L = 50 pF$, $R_L = 110 \Omega$. Refer to Figure 5.		200		ns
To Output LOW, $C_L = 50 pF$, $R_L = 110 \Omega$. Refer to Figure 6.		200		ns
From Output HIGH, $C_L = 50 pF$, $R_L = 110 \Omega$. Refer to Figure 5.		200		ns
From Output LOW, $C_L = 50 pF$, $R_L = 110 \Omega$. Refer to Figure 6.		200		ns
C _L = 15pF, Refer to Figure 9.		50	100	ns
$C_{\rm L}$ = 15pF, Refer to Figure 9.		50	100	ns
t _{PLH} - t _{PHL}		30		ns
To Output HIGH, $C_L = 15 pF$. Refer to Figure 10.		50		ns
To Output LOW, $C_L = 15 pF$. Refer to Figure 11.		50		ns
From Output HIGH, $C_L = 15$ pF. Refer to Figure 10.		50		ns
From Output LOW, $C_L = 15pF$. Refer to Figure 11.		50		ns
d ZT3491E ONLY)		<u> </u>		
		50	600	ns
$C_L = 50 pF$, $R_L = 110 \Omega$. Refer to Figure 5.		200		ns
$C_L = 50 pF$, $R_L = 110 \Omega$. Refer to Figure 6.		200		ns
$C_L = 15pF$, $R_L = 1K\Omega$. Refer to Figure 11.		200		ns
$C_L = 15 pF$, $R_L = 1 K \Omega$. Refer to Figure 11.		200		ns
-				
$R_L = 54\Omega, C_L = 50pF, T_A = 25^{\circ}C.$	16			Mbps
		•		
RS485 Inputs and Outputs		±15		KV
All Pins		±4		KV
	R _{DIFF} = 54Ω, C _L = 50pF. Refer to Figure 4.R _{DIFF} = 54Ω, C _L = 50pF. Refer to Figure 4.It _{PLH} - t _{PHL}]tr, tf, R _{DIFF} = 54Ω, C _L = 50pF. Refer to Figure 4.To Output HIGH, C _L = 50pF, R _L = 110Ω. Refer to Figure 5.To Output LOW, C _L = 50pF, R _L = 110Ω. Refer to Figure 5.From Output HIGH, C _L = 50pF, R _L = 110Ω. Refer to Figure 6.From Output LOW, C _L = 50pF, R _L = 110Ω. Refer to Figure 6.C _L = 15pF, Refer to Figure 9.C _L = 15pF, Refer to Figure 9.It _{PLH} - t _{PHL}]To Output HIGH, C _L = 15pF. Refer to Figure 10.To Output HIGH, C _L = 15pF. Refer to Figure 10.From Output HIGH, C _L = 15pF. Refer to Figure 10.From Output LOW, C _L = 15pF. Refer to Figure 11.From Output LOW, C _L = 15pF. Refer to Figure 11.From Output LOW, C _L = 15pF. Refer to Figure 11.C _L = 50pF, R _L = 110Ω. Refer to Figure 5.C _L = 50pF, R _L = 110Ω. Refer to Figure 6.C _L = 15pF, R _L = 1KΩ. Refer to Figure 11.C _L = 50pF, R _L = 1KΩ. Refer to Figure 11.R _L = 54Ω, C _L = 50pF, T _A = 25°C.RS485 Inputs and Outputs	RDIFF = 54 Ω , C_L = 50pF. Refer to Figure 4.RDIFF = 54 Ω , C_L = 50pF. Refer to Figure 4.Itrut = truttr, tr, RDIFF = 54 Ω , C_L = 50pF, RL = 110 Ω . Refer to Figure 5.To Output HIGH, C_L = 50pF, R_L = 110 Ω . Refer to Figure 5.From Output LOW, C_L = 50pF, R_L = 110 Ω . Refer to Figure 5.From Output LOW, C_L = 50pF, R_L = 110 Ω . Refer to Figure 5.From Output LOW, C_L = 50pF, R_L = 110 Ω . Refer to Figure 6.C_L = 15pF, Refer to Figure 9.C_L = 15pF, Refer to Figure 9.IteLH - tertLTo Output HIGH, C_L = 15pF. Refer to Figure 10.To Output LOW, C_L = 15pF. Refer to Figure 10.From Output HIGH, C_L = 15pF. Refer to Figure 10.From Output LOW, C_L = 15pF. Refer to Figure 10.From Output LOW, C_L = 15pF. Refer to Figure 10.From Output LOW, C_L = 15pF. Refer to Figure 10.From Output LOW, C_L = 15pF. Refer to Figure 10.From Output LOW, C_L = 15pF. Refer to Figure 10.From Output LOW, C_L = 15pF. Refer to Figure 10.From Output LOW, C_L = 15pF. Refer to Figure 10.From Output LOW, C_L = 15pF. Refer to Figure 10.C_L = 50pF, R_L = 110 Ω . Refer to Figure 5. C_L = 50pF, R_L = 110 Ω . Refer to Figure 5. C_L = 15pF, R_L = 110 Ω . Refer to Figure 11. C_L = 15pF, R_L = 1K Ω . Refer to Figure 11.R_L = 54 Ω , C_L = 50pF, T_A = 25°C.16RS485 Inputs and OutputsAll Pins	RDIFF54Ω, CL = 50pF. Refer to Figure 4.35RDIFF54Ω, CL = 50pF. Refer to Figure 4.35IteLH - tPHLI3tr, tr, RDIFF54Ω, CL = 50pF. Refer to Figure 4.15To Output HIGH, CL = 50pF, RL = 110Ω. Refer to Figure 5.200To Output LOW, CL = 50pF, RL = 110Ω. Refer to Figure 6.200From Output LOW, CL = 50pF, RL = 110Ω. Refer to Figure 5.200From Output LOW, CL = 50pF, RL = 110Ω. Refer to Figure 6.200From Output LOW, CL = 50pF, RL = 110Ω. Refer to Figure 6.200CL = 15pF, Refer to Figure 9.50CL = 15pF, Refer to Figure 9.50IteLH - tPHLI30To Output HIGH, CL = 15pF. Refer to Figure 10.50From Output LOW, CL = 15pF. Refer to Figure 11.50From Output LOW, CL = 15pF. Refer to Figure 11.50From Output LOW, CL = 15pF. Refer to Figure 11.50CL = 50pF, RL = 110Ω. Refer to Figure 5.200CL = 50pF, RL = 110Ω. Refer to Figure 6.200CL = 50pF, RL = 110Ω. Refer to Figure 11.50RL = 50pF, RL = 110Ω. Refer to Figure 5.200CL = 50pF, RL = 110Ω. Refer to Figure 6.200CL = 50pF, RL = 110Ω. Refer to Figure 11.200CL = 15pF, RL = 110Ω. Refer to Figure 11.200RL = 54Ω, CL = 50pF, TA = 25°C.16RS485 Inputs and Outputs \pm 15All Pins \pm 4	RDIFF = 54Ω, CL SOPE. Refer to Figure 4. 35 75 RDIFF = 54Ω, CL = 50pF. Refer to Figure 4. 35 75 ItPLH - tPHL] 3 15 15 25 To Output HIGH, CL = 50pF, RL = 110Ω. Refer to Figure 5. 200 To Output LOW, CL = 50pF, RL = 110Ω. Refer to Figure 6. 200 From Output LOW, CL = 50pF, RL = 110Ω. Refer to Figure 5. 200 From Output LOW, CL = 50pF, RL = 110Ω. Refer to Figure 5. 200 From Output LOW, CL = 50pF, RL = 110Ω. Refer to Figure 6. 200 CL = 15pF, Refer to Figure 9. 50 100 CL = 15pF, Refer to Figure 9. 50 100 IbrLH - tPHL] 30 To To To Output HIGH, CL = 15pF. Refer to Figure 10. 50 To To To Output LOW, CL = 15pF. Refer to Figure 10. 50 From Output LOW, CL = 15pF. Refer to Figure 10. 50 From Output LOW, CL = 15pF. Refer to Figure 11. 50 E E Z23491E ONLY)

(1) Tested in accordance with JEDEC Standard 22, Test Method A114-A and IEC 60749-26

3 AC Electrical Characteristics (ZT3483E and ZT3488E)

Unless otherwise stated, Vcc = +3.3V, TA = Tmin to Tmax, typical values apply at Vcc = +3.3V and $TA = 25^{\circ}C$.

Parameter	Condition	Min	Тур	Max	Units
Transmitter Timing			-		
Transmitter Propagation t _{PLH}	$R_{DIFF} = 54\Omega$, $C_L = 50$ pF. Refer to Figure 4.	250	800	1500	ns
Transmitter Propagation t _{PHL}	$R_{DIFF} = 54\Omega$, $C_L = 50$ pF. Refer to Figure 4.	250	800	1500	ns
Transmitter Output Skew ^t sк	t _{PLH} - t _{PHL}			200	ns
Transmitter Rise/Fall Time	tr, tf, $R_{DIFF} = 54\Omega$, $C_L = 50$ pF. Refer to Figure 4.	350		1600	ns
Transmitter Output Enable	To Output HIGH, $C_L = 50 pF$, $R_L = 110 \Omega$. Refer to Figure 5.		200		ns
	To Output LOW, $C_L = 50 pF$, $R_L = 110 \Omega$. Refer to Figure 6.		200		ns
Transmitter Output Disable	From Output HIGH, $C_L = 50 \text{pF}$, $R_L = 110 \Omega$. Refer to Figure 5.		200		ns
	From Output LOW, $C_L = 50 pF$, $R_L = 110 \Omega$. Refer to Figure 6.		200		ns
Receiver Timing			-		
Receiver Propagation t _{PLH}	C_{\downarrow} = 15pF, Refer to Figure 9.			200	ns
Receiver Propagation t _{PHL}	$C_{\rm F}$ = 15pF, Refer to Figure 9.			200	ns
Differential Receiver Skew t _{SK}	t _{PLH} - t _{PHL}		30		ns
Receiver Output Enable	To Output HIGH, $C_L = 15 pF$. Refer to Figure 10.		50		ns
	To Output LOW, $C_L = 15 pF$. Refer to Figure 11.		50		ns
Receiver Output Disable	From Output HIGH, $C_L = 15$ pF. Refer to Figure 10.		50		ns
	From Output LOW, $C_L = 15 pF$. Refer to Figure 11.		50		ns
Shutdown Timing (ZT3483E ON	ILY)				
Time to Shutdown, t _{SHDN}			50	600	ns
Transmitter Enable from SHUTDOWN to Output HIGH	$C_L = 50 pF$, $R_L = 110 \Omega$. Refer to Figure 5.		200		ns
Transmitter Enable from SHUTDOWN to Output LOW	$C_L = 50 pF$, $R_L = 110 \Omega$. Refer to Figure 6.		200		ns
Receiver Enable from SHUTDOWN to Output HIGH	$C_L = 15 pF$, $R_L = 1K\Omega$. Refer to Figure 11.		200		ns
Receiver Enable from SHUTDOWN to Output LOW	$C_L = 15 pF$, $R_L = 1K\Omega$. Refer to Figure 11.		200		ns
Transceiver Throughput	•				
Maximum Data Rate	$R_L = 54\Omega, C_L = 50pF, T_A = 25^{\circ}C.$	0.25			Mbps
ESD Tolerance		•	-		
ESD HBM	RS485 Inputs and Outputs		±15		KV
ESD HBM ⁽¹⁾	All Pins		±4		KV

(1) Tested in accordance with JEDEC Standard 22, Test Method A114-A and IEC 60749-26

ZT3483E/ZT3485E/ZT3488E/ZT3490E/ZT3491E Low Power 3V 250Kbps/16Mbps RS485 Transceivers

4 Pin Description

Pin Numbers						
Half Duplex	Full D	uplex	Pin Name	Pin Description		
ZT3483E			Name			
ZT3485E	ZT3490E	ZT3491E				
1	2	2	RO	Receiver Output. If A>B by 200mV, then RO = HIGH; If A <b 200mv,="" by="" ro="LOW</td" then="">		
2	n/a	3	RE	Receiver Output Enable Low active input RO is high-Z when $\overline{\text{RE}}$ = HIGH		
3	n/a	4	DE	Driver Output Enable. The transmitter outputs, Y and Z, are enabled when DE = HIGH. The outputs are high-Z when DE = LOW		
4	3	5	DI	Driver Input. A low on DI forces output Y low and output Z high. A high on DI will bring output Y high and output Z low		
5	4	6, 7	GND	Analog Ground		
n/a	5	9	Y	Non-inverting transmitter output		
n/a	6	10	Z	Inverting transmitter output		
6	n/a	n/a	А	Non-inverting transmitter output and non-inverting receiver input.		
n/a	8	12	А	Non-inverting receiver input.		
7	n/a	n/a	В	Inverting transmitter output and inverting receiver input.		
n/a	7	11	В	Inverting receiver input		
8	1	14	VCC	Power Supply Input, 5V ±10%		
n/a	n/a	1, 8, 13	NC	No Connect, Not internally connected.		

5 Circuit Description

The ZT3483E, ZT3485E, ZT3488E, ZT3490E, and ZT3491E are low-power transceivers for RS-485 and RS-422 communications. The RS-485 standard is ideal for multi-drop applications and for long-distance interfaces. The TIA/EIA-485 specification allows up to 32 drivers and 32 receivers to be connected to a data bus, making it an ideal choice for multidrop applications. RS-485 transceivers are equipped with a wide (-7V to +12V) common mode range to accommodate ground potential differences since the cabling can be as long as 4,000 feet. As RS-485 is a differential interface, data is virtually immune to noise in the transmission line.

The ZT3483E and ZT3488E are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables.

RS-485 Transmitters

Each device in the ZT34xxE family contains a differential output line transmitter that can drive voltage into multiple loads on a terminated two-wire pair, and a receiver that accepts a differential voltage down to 200mV. The transmitter's differential output can comply with RS-485 and also RS-422 standards. The typical voltage output swing with no load is 0V to Vcc. With worst case loading of 54 ohms across the differential outputs, the drivers can maintain greater than 1.5V voltage levels, which is more than adequate for a differential receiver to acknowledge a logic state. The 54 ohms is the equivalent of two 120 ohm termination resistors placed on each side of the transmission line and the input impedance of 32 receivers on the line.

The ZT3485E transmitter has an enable control line which is active HIGH. A logic HIGH on DE (pin 3) will enable the differential outputs. A logic LOW on DE (pin 3) will disable the transmitter outputs. While disabled, the transmitter outputs are in high impedance.

RS-485 Receivers

Each transceiver contains one differential receiver that has an input sensitivity of 200mV. The input impedance of the receivers is typically 15K ohms. A wide common mode range of -7V to +12V allows for large ground potential differences between systems.

The ZT3485E and ZT3491E receivers have a enable control input. A logic LOW on $\overline{\text{RE}}$ will enable the receiver, a logic HIGH on $\overline{\text{RE}}$ will disable the receiver. The receivers are equipped with the fail-safe feature, which guarantees that the receiver output will be in a HIGH state when the input is left unconnected. This applies for both cases where the receiver inputs are either shorted or open.

The ZT3485E, ZT3490E, and ZT3491E can transmit and receive at data rates up to 16Mbps. The ZT3483E and ZT3488E are specified for data rates up to 250Kbps.

Bus Configuration

The ZT3490E and ZT3491E are full-duplex transceivers, while the ZT3483E and ZT3485E are half-duplex. For full duplex, the devices are used as a four-wire bus transceiver with a configuration that the transmitters and receivers are moving data independent of each other. Transmit can occur on a dedicated two-wire pair and receive can occur on an adjacent two-wire pair, with each pair transferring data at up to 16Mbps.

Half duplex is a configuration where the transmitter outputs are connected to its receiver inputs. This application is common for two-wire interfaces where either the transmitter is active or the receiver is active. It is common to connect the enable inputs for the transmitter and receiver together so that a logic HIGH will enable the transmitter and disable the receiver. Conversely, a logic LOW will disable the transmitter and enable the transmitter. Half-duplex configuration and these devices are designed for bidirectional data transmission on multipoint twisted-pair cables for applications, such as digital motor controllers, remote sensors and terminals, industrial process control, security stations and environmental control systems.

ESD Immunity

Electro-Static Discharge (ESD) is an important factor when implementing a serial port into a system, especially in harsh environmental conditions. These industrial strength devices provide extra protection against ESD and are intended for harsh environments where high-speed data communication is important.

All of the ZT3485E family of transceivers incorporate internal protection structures on all pins to protect against ESD charges encountered during handling and assembly. The driver outputs and receiver inputs have extra protection against static electricity as they are directly interfacing to the outside environment. As such, these pins against ESD of ± 15 KV without damage in all states of the transceiver's operation from normal to powered down. After multiple ESD events, ASIX's ZT3485E family of transceivers keep working without latchup. These devices eliminate the need for external transient suppressor diodes and the associated high capacitance loading, allowing reliable high-speed data communications.

The Human Body Model has been the generally accepted ESD testing method for semiconductors. This test is intended to simulate the human body's potential to store electrostatic energy and discharge it to an integrated circuit upon close proximity or contact. This method will test the IC's capability to withstand an ESD transient during normal handling such as in manufacturing areas where the ICs tend to be handled frequently.

6 Function Table

ZT3483E/ZT3485E

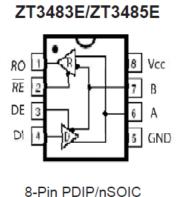
	DRI	VER		RECEIVER			
Input	Enable	Outputs		Differential Inputs	Enable	Output	
DI	DE	А	В	$V_{ID} = V_A - V_B$	RE	RO	
Н	Н	Н	L	$V_{\text{ID}} \leq$ -0.2V	L	L	
L	Н	L	Н	$-0.2V < V_{ID} < +0.2V$	L	U	
X	L	Ζ	Z	+0.2V \leq VID	L	Н	
Open	Н	Н	L	Х	Н	Z	
Х	Open	Z	Z	Х	Open	Z	

ZT3488E/ZT3490E

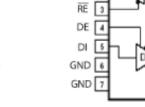
	DRIVER		RECEIVER		
Input	Outputs		Differential Inputs	Output	
DI	Y	Z	$V_{ID} = V_A - V_B$	RÔ	
Н	Н	L	$V_{\text{ID}} \leq$ -0.2V	L	
L	L	Н	$-0.2V < V_{\rm ID} < +0.2V$	U	
X	Z	Z	+0.2V \leq VID	Н	
Open	Н	L	Х	Z	
Х	Z	Z	Х	Z	

ZT3491E

	DRI	VER		RECEIVER				
Input	Enable	Out	puts	Differential Inputs	Enable	Output		
DI	DE	Y	Z	$V_{ID} = V_A - V_B$	RE	RO		
Н	Н	Н	L	$V_{\text{ID}} \leq -0.2V$	L	L		
L	Н	L	Н	-0.2V < V id < +0.2V	L	U		
X	L	Z	Z	+0.2V \leq VID	L	Н		
Open	Н	Н	L	Х	Н	Z		
X	Open	Z	Z	Х	Open	Z		


Note:

H = High Level; L = Low Level; Z = High Impedance; X = Irrelevant; U = Undetermined State.



7 Pin Configuration

Vcc 1 R A RO 2 7 B DI 3 6 Z GND 4 5 Y

ZT3488E/ZT3490E

NC 1 RO 2

14-Pin PDIP/nSOIC

ZT3491E

14 Vcc

13 NC

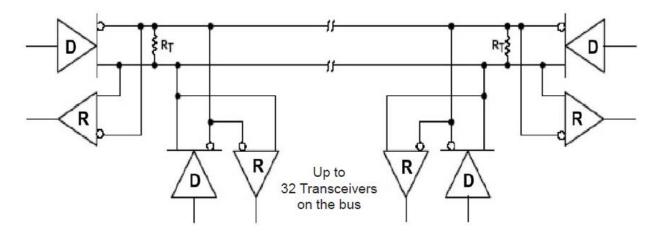
Α.

Z Y

NC

12

10


9

11 B

6-PIN PDIP/NSOIC

8-Pin PDIP/nSOIC

8 **Typical Application Circuits**

Notes:

- A. The bus should be terminated at both ends in its characteristic impedance of RT = ZO.
- B. Stub lengths off the main bus should be kept as short as possible.
- C. Can connect up to 32 devices on the same common bus

9 Typical Test Circuits

Notes:

A. The test load capacitance includes probe and test jig capacitance, unless otherwise specified.

B. The signal generator had the following characteristics: Pulse rate = 1000 KHz, 50% duty cycle, $ZO = 50\Omega$, tr & tf < 6ns, unless otherwise specified.

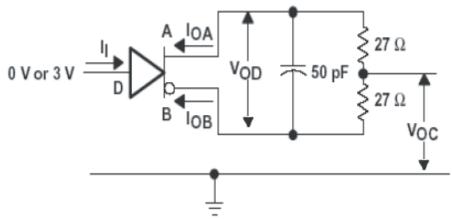


Figure 1. Driver Test Circuit, VOD and VOC without Common-Mode Loading

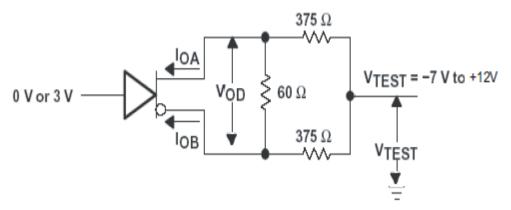


Figure 2. Driver Test Circuit, VOD with Common-Mode Loading

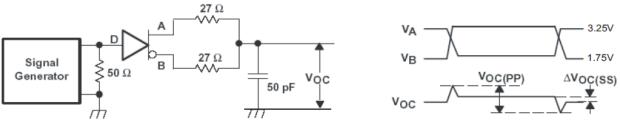
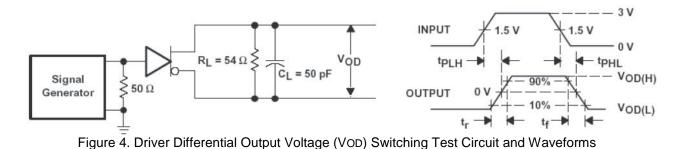



Figure 3. Driver Common-Mode Output Voltage (Voc) Test Circuit and Waveforms

ZT3483E/ZT3485E/ZT3488E/ZT3490E/ZT3491E Low Power 3V 250Kbps/16Mbps RS485 Transceivers

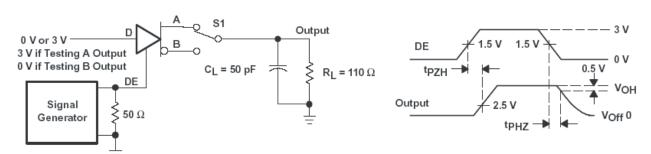


Figure 5. Driver Enable/Disable Test Circuit and Waveforms, High Output

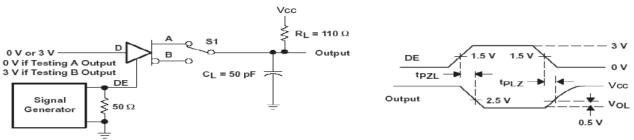


Figure 6. Driver Enable/Disable Test Circuit and Waveforms, Low Output

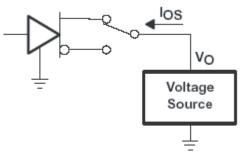


Figure 7. Driver Short-Circuit Test Configuration

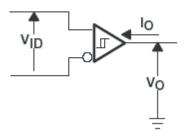
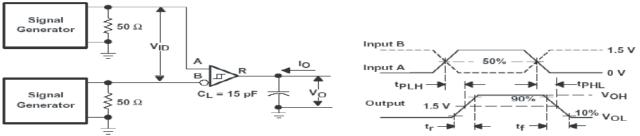
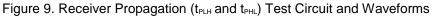




Figure 8. Receiver Parameter Definitions



Figure 10. Receiver Output Enable/Disable Test Circuit and Waveforms, Data Output High

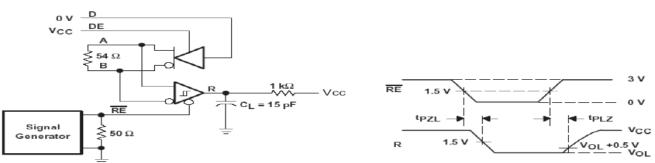
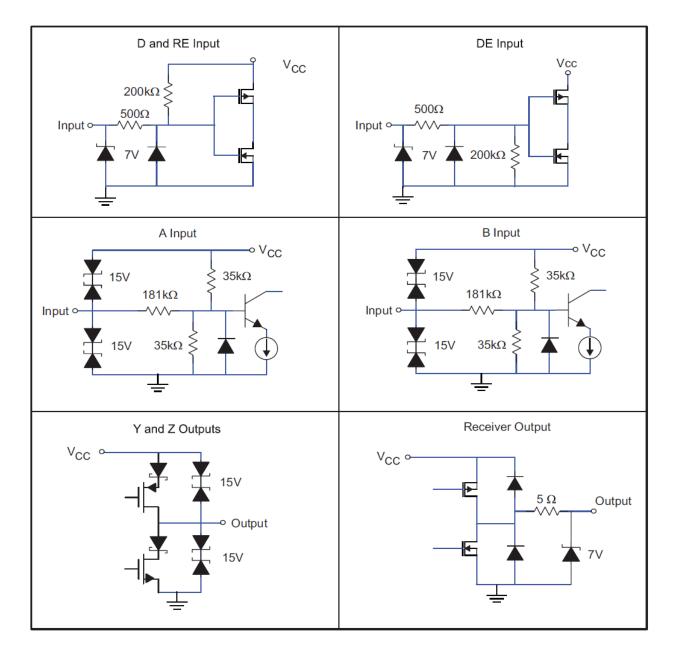
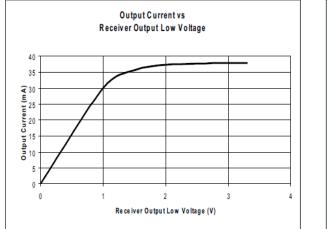
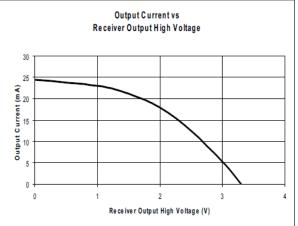
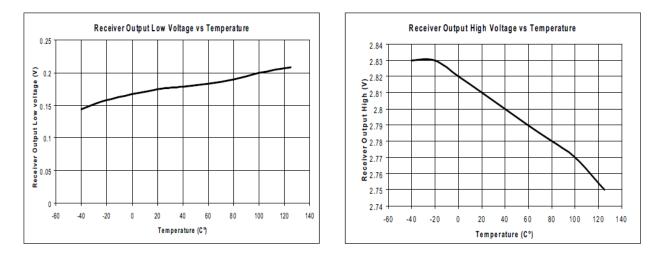
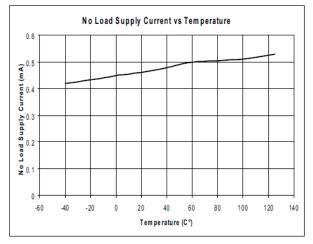



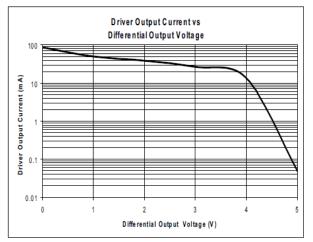
Figure 11. Receiver Output Enable/Disable Test Circuit and Waveforms, Data Output Low

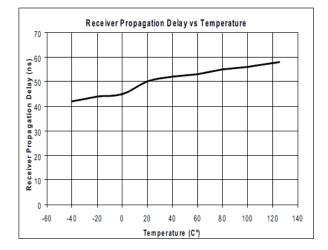

10 Equivalent Input and Output Schematic Diagrams

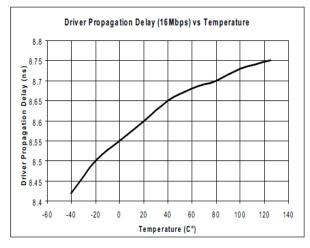


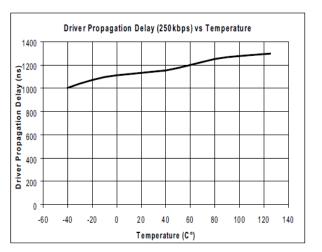




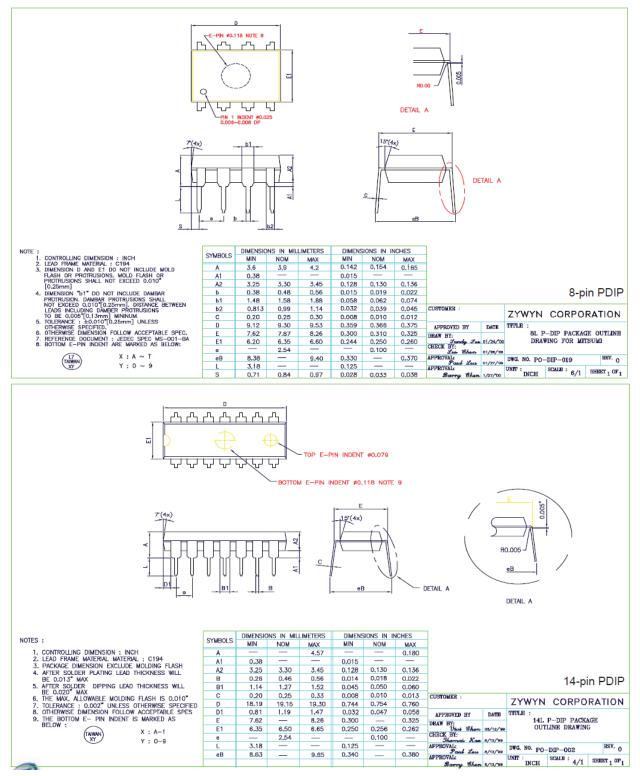

11 Typical Performance Characteristics

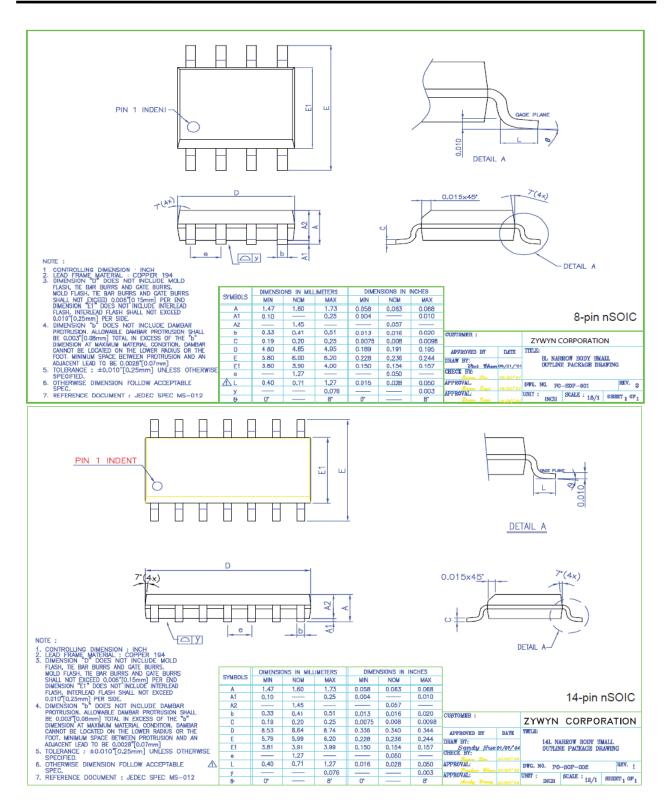




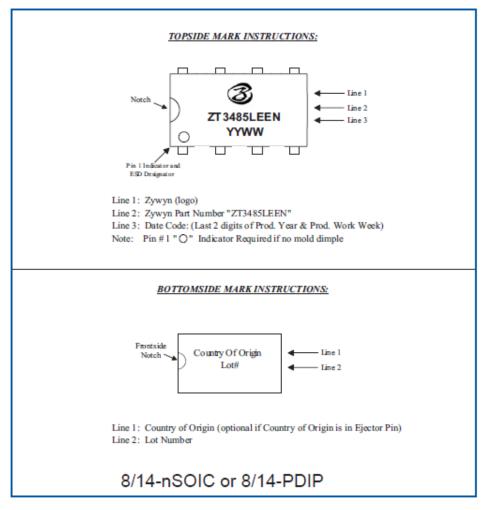


ZT3483E/ZT3485E/ZT3488E/ZT3490E/ZT3491E Low Power 3V 250Kbps/16Mbps RS485 Transceivers




12 Package Information

ZT3483E/ZT3485E/ZT3488E/ZT3490E/ZT3491E Low Power 3V 250Kbps/16Mbps RS485 Transceivers



13 Ordering Information

Part Number	Tem peratu re Range	Package Type	G reen P ackag e	MOQ/Tube	MOQ/T&R
ZT3483LEEN	-40°C to +85°C	8-pin nSOIC		100	2500
ZT3483LEEP	-40°C to +85°C	8-pin PDIP		60	N/A
ZT3485LEEN	-40°C to +85°C	8-pin nSOIC		100	2500
ZT3485LEEP	-40°C to +85°C	8-pin PDIP		60	N/A
ZT3488LEEN	-40°C to +85°C	8-pin nSOIC		100	2500
ZT3488LEEP	-40°C to +85°C	8-pin PDIP		60	N/A
ZT3490LEEN	-40°C to +85°C	8-pin nSOIC		100	2500
ZT3490LEEP	-40°C to +85°C	8-pin PDIP		60	N/A
ZT3491LEEN	-40°C to +85°C	14-pin nSOIC		58	2500
ZT3491LEEP	-40°C to +85°C	14-pin PDIP		30	N/A

Please contact the factory for pricing and availability on Tape-on-Reel options.

14 Part Marking Information

Revision History

Revision	Date	Comment	
V1.5	2012/06/01	Initial release to customers	
V2.00	2015/04/08	1. Changed to ASIX Electronics Corp. logo, strings and contact information.	
		2. Added ASIX copyright legal header information.	
		3. Modified the Revision History table format.	

4F, No. 8, Hsin Ann Rd., HsinChu Science Park, HsinChu, Taiwan, R.O.C.

> TEL: 886-3-5799500 FAX: 886-3-5799558

Sales Email: <u>sales@asix.com.tw</u> Support Email: <u>support@asix.com.tw</u> Web: <u>http://www.asix.com.tw</u>

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by ASIX manufacturer:

Other Similar products are found below :

5962-9217601MSA 634810D 875140G HEF4022BP HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG NLU3G16AMX1TCG NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) RHFAC244K1 74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7